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Electro-Thermo-Mechanical Coupling in 
Isotropic Polarized Structures

The main conclusions:
The stationary electric and mechanical fields induced by the prescribed temperature distributions in polarized isotropic (non-piezoelectric) layered structures are studied. To this end, the local gradient theory
of dielectrics is used. It is found that the distribution of mechanical displacement in narrow layer with thermal inclusion may be significantly changed with respect to the ones predicted by the classical
solution. This phenomenon is size-dependent and it can be neglected by increasing the size of thermal inclusion. The introduction of the local mass displacement parameters into governing equations makes
the distribution of displacement smooth. Moreover, the plane thermal inclusion in non-piezoelectric structure induces the electric field and polarization localized close to the thermal inclusion interfaces. Due
to the layer polarization, the bound electric charges are induced on the layer interfaces. Hence, the thin thermal inclusion produces the thermal polarization effect and impacts the distribution of coupled
physical fields in the vicinity of the thermal inclusion interfaces.

The local gradient theory of dielectrics provides a basis for the investigation of micro-scale effect and electro-thermo-mechanical coupling phenomena in materials of arbitrary symmetry,
including the isotropic centrosymmetric crystals. The theory should be potentially helpful in some practical applications where the size effect is used. The local gradient theory of dielectrics can also contribute
to the development of novel electro-thermo-mechanical coupling devices where the large temperature gradient may occur.

Classical piezoelectricity fails to explain the electro-thermo-mechanical coupling in centrosym-
metric materials, as well as to cover both the surface and size effects in solids. To overcome
intrinsic limitations of classical theory of dielectrics, the gradient-type models can be applied for
investigation of micro-scale phenomena in materials. In this study, we used a local gradient
theory of dielectrics which considers the interaction between the process of deformation of the
body described by the displacement vector and the stress field, the electromagnetic processes
characterized by the electromagnetic field vectors, the process of heat conduction
characterized by the temperature field and the heat flux q, and the process of microstructure
changes characterized by non-diffusive and non-convective mass flux (the local mass
displacement - LMD). In this work, the relations of local gradient electro-thermo-elasticity are
tested on the simple boundary value problem: the electro-thermo-mechanical coupling
response of elastic dielectrics to the temperature gradients is studied.
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Field 
equations:

Constitutive 
relations:

Kinematic 
relations:

Within the local gradient electro-thermo-electricity, the system of basic linear equations includes [See, 
Hrytsyna O., Kondrat V. Local Gradient Theory for Dielectrics: Fundamentals and Applications. 
Singapore: Jenny Stanford Publishing Pte. Ltd., 2020]:

Here, are the stress and strain tensors; u is the displacement vector; F denotes the mechanical
mass force; is the mass density; are the specific densities of the induced charge and
induced mass, respectively; D represents the electric displacement vector; E and are electric field and
polarization vectors, respectively; is the electric potential; is the chemical potential;

is the energy measure of the effect of the local mass displacement on the internal energy; is the
specific vector of the local mass displacement; T is the temperature; θ = T – T0, s is the specific entropy;
q is the heat flux vector; is the generalized free energy; is the permittivity of vacuum.
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Thermal inclusion induced the electric polarization of interfaces and can excite rather 
high electric field in very narrow regions around the interfaces:  4
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Figure 1. Infinite polarized 
medium with a plane thermal 
inclusion
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Prescribed temperature distribution 
(thermal inclusion) in elastic dielectric medium: 

Coupled electro-elastic fields in isotropic  dielectrics 
with a plane thermal inclusion
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Consider an infinite plane isotropic (non-piezoelectric) layer of the thickness 2h. The layer is in
contact with two homogeneous half-spaces (Fig. 1). The body force and heat sources in the
structure are not incorporated. The layer and the outside space are held at constant, but different
temperature.
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The polarization of elastic solids induced by the temperature gradient is known as a
thermal polarization effect. A temperature gradient breaks the inversion symmetry
and induces polarization even in centrosymmetric materials. Classical theory fails to
capture this effect in non-piezoelectric structures. The local gradient theory describes
the thermal polarization effect in isotropic centrosymmetric materials with cubic
symmetry. It is shown that in thermoelastic polarized layered structure, a part of the
thermal energy induced by the non-uniform temperature distribution is spent on the
body polarization.

In non-piezoelectric crystals, classical theory predicts the linear distribution of the mechanical
displacement within the layer, displacements outside the layer should be homogeneous. Within the
framework of the local gradient theory, the smooth profile for displacement field is obtained. Also, the
medium outside the layer is now not free of distortions. In case of thick layers, the local gradient theory
correction would scarcely be important for strain field. However, if the thickness of the layer diminishes
and becomes comparable to the material microstructural characteristic length, the nonlinearity in
distribution of the displacement increases. The nonlinear law of distribution of displacement is more
pronounced for more narrow layers. As a consequence, the profile of mechanical displacement in the
nano-thin elastic layer significantly deviates from the linear law predicted by the classical theory.

Figure 3. Distribution of the electric field E/E*

induced by the thermal inclusion in non-
piezoelectric elastic structure.

Figure 2. Distribution of the normalized displacement u/u*

caused by the thermal inclusion in non-piezoelectric 
elastic structure.
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Numerical Calculations

The density of the bound surface 
charge induced on the interfaces 
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The generalized 
free energy


