

Two-electron systems in two-dimensional heterostructures with ion-covalent bond

<u>Kashirina N.I.¹</u>, Venger E.F.¹, Kashyrina Ya.O.², Roik O.S.²

¹V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine , kashirina1506@gmail.com ;

²Taras Shevchenko National University of Kyiv;

INTRODUCTION

The unique properties of two-dimensional (2D) materials such as graphene [1] and materials with a structure similar to graphene [2] cause interest in connection with the possibility of applying such materials in quantum electronics, semiconductor technique and quantum computing systems. The study of impurity centers in such materials is one of the fundamental areas of modern nanoscience. The paper presents the calculation of the energy of singlet and triplet states of two-electron systems such as exchange-coupled pairs of shallow hydrogen-like impurities and D-centers in 2D graphene-like structures with ion-covalent bond. The calculations were carried out by the variational method with using the Gaussian system of functions. Similar functions were previously used to calculate the energy of the singlet and triplet states of the 2D hydrogen molecule [3]. The parameters of the electronphonon coupling were determined using the dielectric characteristics calculated in [2] with using the modified method of binding orbitals of binary 2D $A_N B_{8-N}$ compounds.

2D Hydrogen atom

$$\Psi_{ex}(r) = \left(\frac{8}{\pi}\right)^{1/2} \alpha \exp(-2\alpha r),$$

$$\Psi(r) = \frac{1}{\sqrt{N(C,a)}} \sum_{i=1}^{n} C_i \exp(-a_i r^2).$$

Table I. Parameters of the approximate WF 2D H

n	C _i	a _i
1	1	1.03139·10 ⁵
2	2.357667	9.96784·10 ³
3	4.182117 [.] 10 ¹	7.54247
4	1.041053 [.] 10 ¹	0.33655
5	5.214417 [.] 10 ¹	2.54461
6	9.249844	3.38236·10 ²
7	4.867695	1.60521·10 ³
8	2.754942·10 ¹	2.41163·10 ¹
9	4.101679 [.] 10 ¹	0.91133
10	1.648679.10 ¹	8.48389·10 ¹

Table II. Approximate $\Psi(r)$ and exact $\Psi_{ex}(r)$ values of the WF of a 2D H

	N⁰	r	Ψ(r)	$\Psi_{ex}(r)$ (<i>a</i> =1)	
-	1	0	1.593303	1.595769	

The *R* parameter in Table III determines the ratio of the effective Rydberg to the energy of longitudinal optical phonons:

$$R = \frac{Ry^*}{\hbar\omega} = m^* e^4 / \left(2\varepsilon_0^2 \hbar^3 \omega\right) = \alpha^2 \eta^2 / \left(1 - \eta\right)^2$$

Exchange-Coupled Pairs of Paramagnetic Centers in 2D Crystals

The energy of exchange-coupled pairs in covalent 2D crystals can be determined based on the calculation of the energy of a 2D hydrogen molecule [3]. To calculate the value of the effective Rydberg, one should use the crystal parameters. In the case when the crystal has an addition of ionic bonds, the calculations should be performed taking into account the electron-phonon interaction with l optical phonons. Table V. Lists the energy calculations for singlet and triplet exchange-coupled pairs of shallow hydrogen-like centers in 2D crystals, as well as various contributions to the total energy (designations T_2 , V_c , V_f and V_{fi} correspond to the first, second, third and fourth terms in equation (5).

	S	-E ₂	T ₂	-V _c	-V _f	-V _{fi}	R _m
٨aDr	0	36.343	37.466	35.654	33.902	4.2538	0 2001
Agdi	1	20.395	23.691	27.185	13.308	13.308	0.2001
A c C I	0	43.348	45.290	40.894	43.093	4.6508	0.1785
Agui	1	23.948	29.038	31.846	17.148	3.9916	
CdED	0	43.519	41.199	22.942	54.511	7.2650	0 2200
Curz	1	24.85	25.481	22.650	21.787	5.8945	0.2209

BASIC RELATIOS

We consider two D^0 centers in the phonon field of a 2D crystal. The energy E_{12} of the ground state of the considered system has the form:

 $E_{12} = \langle \Phi_{12} | H_{12} | \Phi_{12} \rangle$ $H_{12} = -\frac{1}{2} \left(\Delta_1 + \Delta_2 \right) + H_C + H_{2e-f} + H_f \qquad (2) J_{12i} = \frac{2T_{12}}{N_{12}} + \frac{2\alpha V_C}{(1-\eta)N_{12}} + \frac{2\alpha V_{ph}}{(1-\eta)N_{12}} + \delta J_{2i}, \quad (5)$ $H_{2e-f} = \sum_{k} V_{k} \begin{cases} \left[\exp(-ikr_{1}) + \exp(-ikr_{2}) \right] a_{k}^{+} \\ +H.c. \end{cases}$ $H_{f} = \sum_{k} \hbar \omega_{k} a_{k}^{+} a_{k} \quad \eta = \varepsilon_{\infty} / \varepsilon_{0}, \quad V_{k} = \sqrt{\frac{2\pi\alpha}{Sk}} \end{cases}$ $\alpha = \frac{1}{\hbar\omega} \frac{e_0^2}{2\varepsilon_{\infty}} (1-\eta) \cdot \left(\frac{2m^*\omega}{\hbar}\right)^{1/2}, \quad \tilde{E}_h = \frac{e_0^4 m_{ef}}{\hbar^2 \varepsilon_{\infty}^2},$ $H_{c} = -\eta Z \left(\frac{1}{r_{a1}} + \frac{1}{r_{b1}} + \frac{1}{r_{a2}} + \frac{1}{r_{b2}} - \frac{1}{R_{12}} \right) + \frac{1}{r_{12}}$ $\Phi_{12} = \Psi_{12} \exp(-S_1 - S_2), \quad S_1 = \sum f_k (a_k^+ - a_k)$

 $S_{2} = \sum_{k,j} g_{k}(\mathbf{r}_{1},\mathbf{r}_{2}) \exp(-i\mathbf{k}\mathbf{r}_{i})a_{k}^{+} + H.c.$ $g_{k} = \varphi_{k} \left(\exp(-i\mathbf{k}\mathbf{r}_{1}) + \exp(-i\mathbf{k}\mathbf{r}_{2})\right)$

The electron WF is determined by:

$$\Psi_{12} \equiv \Psi_{12}(r_1, r_2, r_{12})$$

2	0.5	0.587129	0.587051
3	1	0.215924	0.215964
4	1.5	7.954769 10 ⁻²	7.944867 10 ⁻²
5	2	2.912527 10 ⁻²	2.922753 10 ⁻²
6	2.5	1.084476 10 ⁻²	1.075221 10 ⁻²
7	3	3.964019 10 ⁻³	3.955516 10 ⁻³
	_		

2

3

 $E_{ex} = -2E_h, E_H(\Psi) = -1.9999762E_h$

(1) INTERMEDIATE COUPLING $E_2 = \min\left\{J_{12i}\right\}$

Table III. Material parameters

Crysta l	m _e /m _e 0	ε ₀	٤	ħω meV	α	R
GaAs	0.063	12.1	10.64	35.0	0.056	0.164
CdTe	0.096	9.6	7.21.	21.08	0.272	0.675
CdS	0.155	8.42	5.27	38.0	0.529	0.783
ZnSe	0.16	8.66	5.9	31.4	0.45	0.924
AgBr	0.22	10.6	4.68	15.4	1.64	1.68
AgCl	0.3	9.5	3.99	24.4	1.9	1.9
CdF ₂	0.283	7.78	2.4	50.0	2.53	1.274

Table IV. Results of calculations in 2D systems of the ground-state energies of D^0 and \overline{D} - centers, E^0 , and E^{-} , respectively. Binding energies are denoted E_{B} . All energies are in units of $\hbar\omega$

	Crystal	а	R	- <i>E</i> -	- <i>E</i> ⁰	E_B^-	E_B^0	E_B^-/E_B^0
	GaAs	0.0556	0.164	0.9227	0.7592	0.0761	0.6718	0.1133
	CdTe	0.272	0.673	4.1522	3.3628	0.3622	2.9355	0.1234
	CdS	0.529	0.783	5.9049	4.5496	0.5244	3.7189	0.1410
	ZnSe	0.45	0.925	6.2828	4.9512	0.6247	4.2443	0.1472
	AgBr	1.64	1.68	<mark>5.637</mark> 19.046	<mark>3.817</mark> 13.079	<mark>0.180</mark> 3.3909	<mark>2.177</mark> 10.503	<mark>0.083</mark> 0.3229
	ArCl	1.9	1.9	<mark>6.634</mark> 22.911	<mark>4.482</mark> 15.586	<mark>0.261</mark> 4.3405	<mark>2.582</mark> 12.602	<mark>0.101</mark> 0.3444
	CdF_2	2.53	1.274	24.233	14.911	5.3475	10.937	0.4889

Table VI. Lists the energy calculations for singlet (S=0) and triplet (S=1) states of 2D shallow helium-like centers (Z=2) in crystals, as well as various contributions to the total energy E_2 .

	Crystal	S	-E ₂	T_{2}	-V _C	-V _f	-V _{fi}
	A or D re	0	61.204	62.103	80.233	42.631	0.4436
	Agdi	1	41.106	38.816	62.604	16.033	1.2843
	A C1	0	71.739	70.6252	89.380	52.509	0.4755
	Agui	1	45.8396	35.2214	64.4784	14.1375	2.4451
	CHED	0	62.364	60.936	57.088	65.550	0.6620
	Carz	1	41.073	37.551	51.863	24.8199	1.94151

Table VI shows the energy of the helium-like center. These values correspond to the limiting value of an exchange-coupled pair energy at a distance between the Coulomb centers $R_{12}=0$, without taking into account the energy of the Coulomb centers repulsion. As an example, crystals with a fairly significant ionic value $(1 < \alpha < 2, 0.3 < \eta < 0.5)$. The R_m is the equilibrium distance between Coulomb for the singlet term.

CONCLUSIONS

In crystals with parameters characterizing the intermediate electron-phonon coupling (1< α < 2, $0.06 < \eta < 0.9$, accounting for the interaction of electrons with optical phonons leads to a significant decrease in the energy of the ground state and a significant increase in the binding energy of two-electron centers. For exchangecoupled pairs of impurity centers, the phonon component of the Heisenberg exchange has an antiferromagnetic character and is comparable in magnitude to the energy of the Coulomb exchange interaction calculated without taking into account the polaron component of the energy. Oneelectron WF $\Psi(\mathbf{r})$ can be used to construct twoelectron functions of the singlet and triplet states in the framework of the Heitler-London and the molecular orbital methods. 9

Fig. 1. Two center coordinates system.

 $\Psi_{12} = \sum_{i=1}^{n} (1 + P_{12}) C_i exp(-a_{1i}r_{a1}^2 - 2a_{2i}(\mathbf{r}_{a1} \cdot \mathbf{r}_{b2}) - a_{3i}r_{b2}^2), (3)$

The strong coupling energy of BP in a 2D crystal is

 $\dot{E}_{12} = \min_{\{C_i, a_{1i}, a_{2i}, a_{3i}\}} \{J_{12}\}, J_{12} = \frac{T_{12}}{N_{12}} + \frac{V_C}{N_{12}} + \frac{V_f}{N_{12}^2}, (4)$

where the first, second and third terms of the left part eq. (4) for J_{12} , correspond to the kinetic energy, the Coulomb energy, the total contribution of the phonon field and electron-phonon interaction, respectively; N_{12} - is the normalization integral:

 $N_{12} = \left\langle \Psi_{12} \middle| \Psi_{12} \right\rangle$

The values highlighted in yellow correspond to threedimensional crystals.

in 2D systems:
$$E_{H}^{-}/E_{H} = 0.11992$$

in 3D systems: $E_{H}^{-}/E_{H} = 0.055502$
 $E_{b}^{-} = E^{0} + E_{p} - E^{-}, E_{b}^{0} = E_{p} - E_{b}^{0}, E_{p} \cong -\frac{\pi\alpha}{2}$

For all the parameters given in the Table IV, the polaron energy calculated using the Buimistrov-Pekar method is $E_p = -\pi a/2$ (weak electron-phonon coupling), which is typical for crystals with a ion- covalent bond, when the covalent component of the bond predominates and the conditions for polaron self-trapping are not fulfilled.

References

1. Li X., Tao L., Chen Z., Fang H., Li X., Wang X., Zhu H. // Graphene and related twodimensional materials: Structure-property relationships for electronics and optoelectronics // Applied Physics Reviews. 2017. -4(2). -P. 021306-1-021306-31. doi:10.1063/1.4983646

- 2. Davydov S. Y. Elastic and photoelastic characteristics of graphene-like compounds // Technical Physics Letters.-2017.-43(3).-P. 258-261. doi:10.1134/s106378501703004x
- 3. Kashirina N. I., Kashyrina Ya. O., Korol O. A., Roik O. S. Calculation of the energy of a twodimensional hydrogen molecule // Molecular Physics.-2023.-121(6).-Article: e2198619 doi:10.1080/00268976.2023.2198619

