

Optical gap bowing parameter and spin-orbit splitting in CdSe_{1-x}S_x thin films

-x = 0.3

90

Kashuba A.I.¹, Andriyevsky B.², Ilchuk H.A.¹, Semkiv I.V.¹, Kashuba N.Yu.¹ ¹Department of General Physic, Lviv Polytechnic National University, Bandera Str., 12, Lviv-79046, Ukraine

E-mail: andrii.i.kashuba@lpnu.ua

²Faculty of Electronics and Computer Sciences, Koszalin University of Technology, Sniadeckich Str., 2, Koszalin 75-453, Poland

 $CdSe_{1-x}S_x$ thin films are prepared by the method of high-frequency (HF) magnetron sputtering (13.6 MHz) using a VUP-5M vacuum station (Selmi, Ukraine). The target-substrate distance was 60 mm. The start and end of the process were controlled by means of a movable shutter. Before the sputtering process, the chamber was evacuated. The gas pressure inside the chamber was 4×10^{-4} Pa. This pressure is achievable when using a Polifenilovyi Efir 5Φ4E diffusion fluid in the vapor oil vacuum pump, which provides a low partial vapor pressure (9×10⁻⁷ Pa). The sputtering was carried out at a pressure of argon (Ar) in the range of 1.0–1.3 Pa. The power of the HF magnetron was maintained at the level of 100 W and the temperature of the substrate at 563 K. For heating the substrates, a high-temperature tungsten heater with a power of 300 W was used. The temperature was controlled by means of a proportional-integral-derivative (PID) controller for controlling heating and cooling rates, as well as for ensuring the temperature conditions of deposition.

The phase analysis and crystal structure refinement were examined with using X-ray diffraction data (DRON-2.0M) at the room temperature. The thickness of the films was measured on a Veeco profilometer (model Dektak 8). The mean value of the $CdSe_{1-x}S_x$ film thickness is ~0.5 µm. The Xray fluorescence spectroscopy (XRF) and energy-dispersive X-ray (EDX) study were used for analyzing the chemical composition of materials. The spectral dependence of the optical transmittance (Shimadzu UV-3600) of the obtained sample in the visible and near-infrared regions is studied at room temperature.

 λ , nm

 $\delta = \delta_{\rm VD} + \delta_{\rm CE} + \delta_{\rm SR}$

Fig. 4. Optical transmission of the $CdSe_{1-x}S_x/quartz$ thin films at room temperature.

Band gap and spin-orbit splitting of $CdSe_{1-x}S_x$ thin films.

Sample	Tauz	$dT/d\lambda$				
	$E_{ m g}$	$E_{ m g}$	E_{g2}	$E_{\rm SO}$		
CdSe	1.6	1.66	2.04	0.38		
CdSe _{0.7} S _{0.3}	1.77	1.85	2.14	0.29		
CdSe _{0.6} S _{0.4}	1.89	1.96	2.28	0.32		
CdSe _{0.4} S _{0.6}	2.17	2.3	2.46	0.16		
CdS	2.34	2.43	2.48	0.05		

Optical gap bowing parameter estimated for main optical transitions of $CdSe_{1-x}S_x$ thin films.										
Methods/Ref.		GGA+PBEsol	Tauz	$\mathrm{d}T/\mathrm{d}\lambda$	[1]	[2]	[3]			
Sample		Thin films			Nanoparticle	Thin films	Crystal			
Crysta	l structure	<i>P</i> 6 ₃ <i>mc</i>				<i>F</i> -43 <i>m</i>				
Optical	$E_{g}(\Gamma_{8}^{v}-\Gamma_{6}^{c})$	0.13	-0.14	-0.24	0.54	0.079	0.53, 0.54			
transitions	$E_{g2}(\Gamma_7^{v} - \Gamma_6^{c})$	0.12	—	-0.33	_	0.101	_			
References										
[1] M.W. Murphy, Y.M. Yiu, M.J. Ward, L. Liu, Y. Hu, J.A. Zapien, Y. Liu, T.K. Sham // J. Appl. Phys 2014 Vol.										
166. – P. 193709.										
[2] L. Zuala, P. Agarwal // Materials Chemistry and Physics. – 2015. – Vol. 162. – P. 813-821.										
[3] I. Hernandez-Calderon, Optical properties and electronic structure of wide band gap II–VI semiconductors. (Ed.by										
M. C.Tamargo). NY: Taylor and Francis, 2002, p. 145.										

Acknowledgements

This work was supported by the Project for Young Scientists No. 0121U108649 granted by the Ministry of Education and Science of Ukraine.