

Electrical properties of photosensitive *n*-MnFe₂O₄/*n*-CdTe heterojunctions

Orletskyi I.G., Ilashchuk M.I., <u>Koziarskyi I.P.</u>, Koval M.V., Maistruk E.V., Koziarskyi D.P.

Department of Electronics and Power Engineering, Yuriy Fedkovych Chernivtsi National University,

2 Kotsubynsky st., 58002 Chernivtsi, Ukraine. E-mail: *i.koziarskyi@chnu.edu.ua*

Introduction

Thin films of manganese ferrite MnFe₂O₄ grown by spray pyrolysis have a band gap $E_g \approx 2.1$ eV [1]. This value is in the range between the values for transparent conducting oxides (TCO) ($E_g > 3$ eV) and for effectively light-absorbing semiconductors (1.1 eV $\leq E_g \leq 1.6$ eV), such as CdTe ($E_g \approx 1.5$ eV). Materials with energy parameters similar to MnFe₂O₄ are successfully used as a buffer layer in CdTe-based heterostructures. In this case, the material of the buffer layer forms a high-quality heterojunction with the base semiconductor.

Experimental technique

The *n*-CdTe substrates with electrical conductivity $\sigma = 1.4 \ \Omega^{-1} \cdot \text{cm}^{-1}$ were used to manufacture *n*-MnFe₂O₄/*n*-CdTe heterojunctions. The *n*-MnFe₂O₄ films with a thickness of $w \approx 0.5 \ \mu\text{m}$ were deposited onto the *n*-CdTe surface by spray pyrolysis from 0.1 M aqueous solutions of MnCl₂·6H₂O and FeCl₃·6H₂O salts.

Experimental results and their discussion

The current rectification factor of the *n*-MnFe₂O₄/*n*-CdTe heterojunction at T = 295 K is 10⁴ at the voltage |V| = 2 V (Fig.1). The main component of the series resistance ($R_S \approx 900 \Omega$) in the structure is a high-resistance *n*-MnFe₂O₄ film ($\rho \approx 10^6 \Omega \cdot \text{cm}$). In the region of forward biases 3kT/q < V < 0.36 V of the *n*-MnFe₂O₄/*n*-CdTe heterojunction, the tunneling-recombination current flow mechanism is realized, which, at voltages V > 0.36 V, passes into recombination in the space charge region (SCR) with a diode coefficient A ≈ 2 . At reverse biases in the voltage range -2.5 V < V < -3kT/q, the main mechanism of current generation of charge carriers in the SCR. The *C*-*V*-characteristics of the *n*-MnFe₂O₄/*n*-CdTe heterojunction are characterized by their frequency shift along the capacitance axis due to the presence of series resistance in the structure. The contact potential difference at the heterojunction determined using the dependences $C^{-2} = f(V)$ is $\varphi_k = 0.92$ V (Fig.2). The *n*-MnFe₂O₄/*n*-CdTe heterojunction generates ~0.56 V at 12000 lux illumination. The photocurrent density is 100 µA/cm². The fabricated heterojunctions are suitable for use as photodetectors of visible radiation.

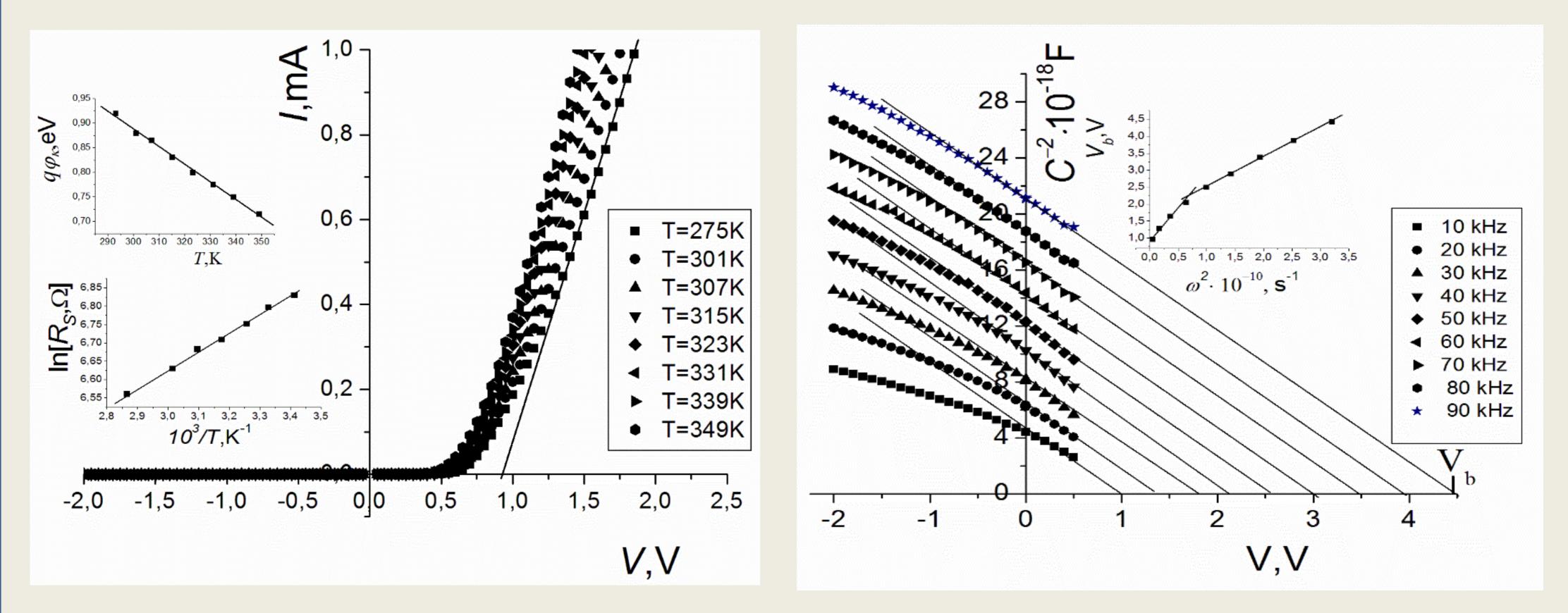
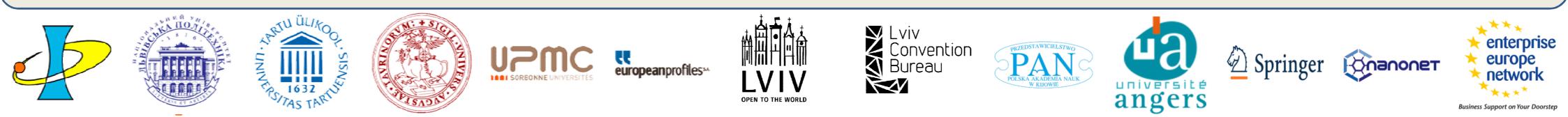



Fig. 1. *I-V*-characteristics of the *n*-MnFe₂O₄/*n*-CdTe heterostructure in the temperature range from 275 K to 349 K (insets - temperature dependence of $q\varphi_k$ and R_S)

Fig. 2. Dependences $C^{-2} = f(V)$ of the *n*-MnFe₂O₄/*n*-CdTe heterostructure at different frequencies (inset – the dependence of the extrapolation voltage V_b on ω^2 to determine φ_k)

References

1. *Nagarajan V., Thayumanavan A*. Spray deposited MnFe₂O₄ thin films for detection of ethanol and acetone vapors // Appl Surf Sci.-2018.-**428**. - P. 748–756.

