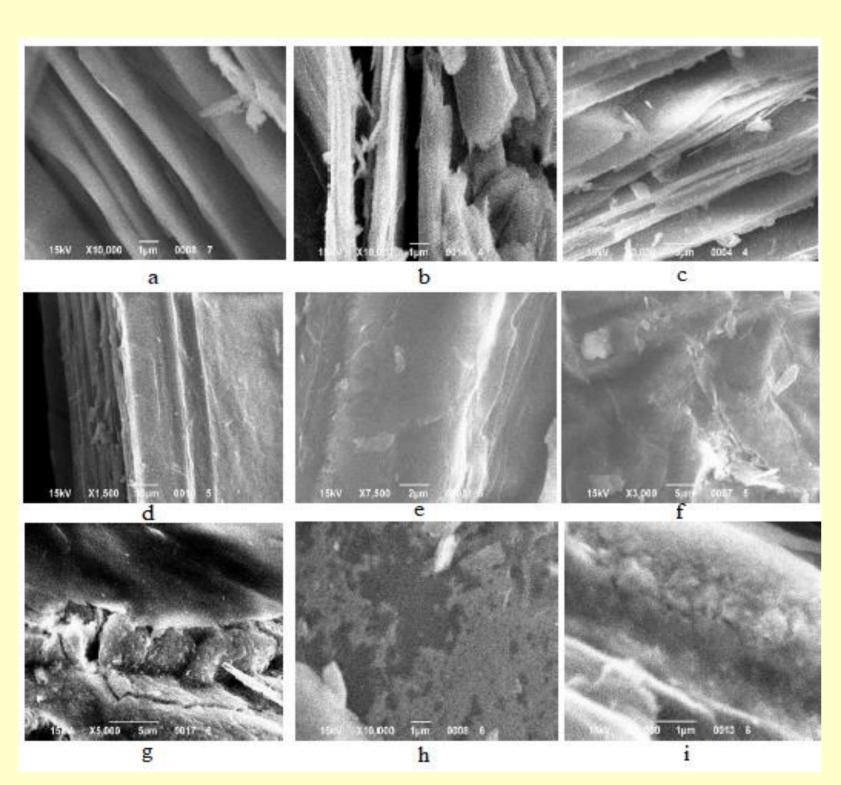


Nanocatalyst based on thermally expanded phlogopite, Pd(II) and Cu(II) compounds for oxidation of CO and SO₂ with atmospheric oxygen


Tatyana Rakitskaya, Anna Nazar*, Tatyana Kiose

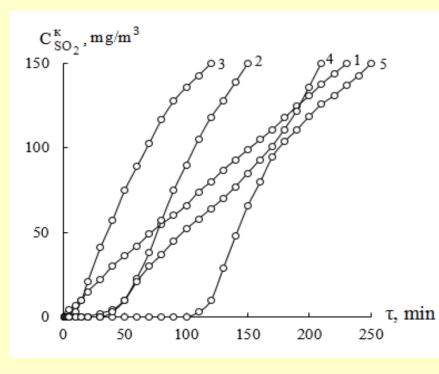
Faculty of Chemistry and Pharmacy, Odesa I.I. Mechnikov National University, 2, Dvoryanska St., 65082, Odesa, Ukraine *e-mail: annnzr1401@gmail.com

Introduction

A common situation is when carbon monoxide and sulfur dioxide are simultaneously present in the waste gases of industrial enterprises. In this regard, research on the polyfunctionality of the Pd(II)- $Cu(II)/\bar{S}$ (\bar{S} – different carriers) nanocatalyst and the detection of the influence of SO_2 on its activity are relevant. Natural materials, including polyphase phlogopite concentrate, are effectively studied as carriers (\bar{S}) of palladium(II) and copper(II) compounds. The phase composition of the phlogopite concentrate significantly affects the activity of the Pd(II)- $Cu(II)/\bar{S}$ catalyst.

Characterization SEM characterization

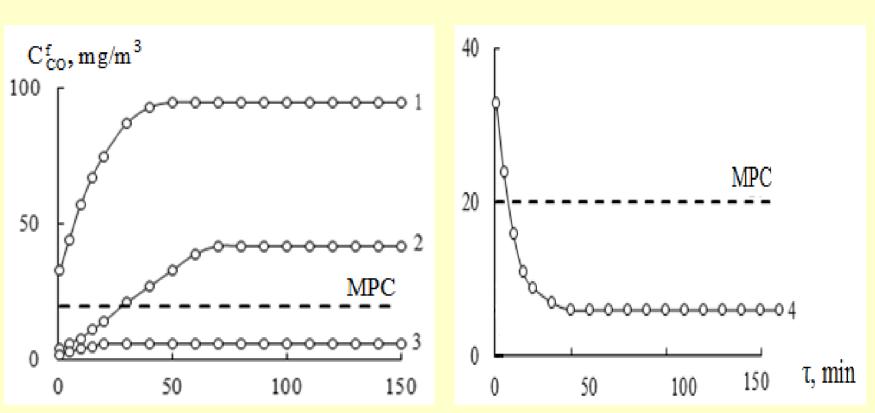
SEM images of samples of natural (a), thermally expanded (b, c) and acid-modified phlogopite (d-i).


Catalytic properties

Table

Influence of the effective contact time of the gas-air mixture with the catalyst and the pH of the suspension on the degree of CO conversion in the presence of catalysts K_2PdCl_4 -Cu(NO₃)₂-KBr/ \overline{X} H-TS-Phl-1.*

τ ₀ , min	τ _{MPC} , min	$Q_{theor} \cdot 10^4,$ mol SO_2	t _{1/2} , s	$k_{1/2} \cdot 10^4,$ s^{-1}	K _S
3	15	2.40	6600	1.04	7.5
5	15	1.04	3000	2.30	15
20	50	1.91	3000	2.30	25
30	50	2.80	8400	0.82	12.5
100	120	3.61	9600	0.72	2.7
	min 3 5 20 30 100	min min 3 15 5 15 20 50 30 50 100 120	min min mol SO ₂ 3 15 2.40 5 15 1.04 20 50 1.91 30 50 2.80 100 120 3.61	min min mol SO ₂ s 3 15 2.40 6600 5 15 1.04 3000 20 50 1.91 3000 30 50 2.80 8400 100 120 3.61 9600	min min mol SO ₂ s s ⁻¹ 3 15 2.40 6600 1.04 5 15 1.04 3000 2.30 20 50 1.91 3000 2.30 30 50 2.80 8400 0.82


 $*Conditions: \ C_{Pd(II)} = 2.72 \cdot 10^{-5}; \ C_{Cu(II)} = 5.9 \cdot 10^{-5}; \ C_{KBr} = 1.02 \cdot 10^{-4} \ mol/g; \ C_{SO_2}^{in} = 150 \ mg/m^3; \ U = 4.2 \ cm/s \ ; t = 20 \ ^{\circ}\!\!C).$

Dependence of the final concentration SO_2 on time τ in the reaction of oxidation of sulfur dioxide with air oxygen in the presence of the composition Pd(II)-Cu(II)- KBr/\overline{S}

S: 1 −TS-Phl; 2 − 1H-TS-Phl-1; 3 − 2H-TS-Phl-1; 4 − 3H-TS-Phl-1; 5 − 6H-TS-Phl-1.

Catalytic properties

Dependence of the final CO concentration on time τ in the oxidation reaction of carbon monoxide with atmospheric oxygen in the presence of a catalyst K_2PdCl_4 -Cu(NO_3)₂-KBr/ \overline{S} . \overline{S} : I-1H-TS-Phl-1; 2-2H-TS-Phl-1; 3-3H-TS-Phl-1; 4-6H-TS-Phl-1.

 $C_{Pd(II)} = 2.72 \cdot 10^{-5}; C_{Cu(II)} = 5.9 \cdot 10^{-5}; C_{KBr} = 1.02 \cdot 10^{-4} \text{ mol/g}; C_{CO}^{in} = 300 \text{ mg/m}^3; U = 4.2 \text{ cm/s}; t = 20 \text{ °C}$

Table

Influence of the effective contact time of the gas-air mixture with the catalyst and the pH of the suspension on the degree of CO conversion in the presence of catalysts K_2PdCl_4 - $Cu(NO_3)_2$ - $KBr/\overline{X}H$ -TS-Phl-1.*

Carrier	h, (cm)	τ _{ef} , s	pH_s	$C_{\text{CO st}}^{\text{f}}$, (mg/m^3)	η _{st} , (%)		
1H-TS-Phl-1	4.0		6.23	95	68		
2H-TS-Phl -1	4.0	0.95	6.09	42	86		
3H-TS-Phl-1	4.0		5.89	6	98		
6H-TS-Phl-1	6.0	1.43	5.68	6	98		

*Conditions: $C_{Pd(II)} = 2.72 \cdot 10^{-5}$; $C_{Cu(II)} = 5.9 \cdot 10^{-5}$; $C_{KBr} = 1.02 \cdot 10^{-4} \, mol/g$; $C_{CO}^{in} = 300 \, mg/m^3$; $U = 4.2 \, cm/s$; $t = 20 \, ^{\circ}C$).

Protolytic properties

The condition $\Delta pH_s > 0$ is satisfied for all samples of phlogopite, which indicates the progress of the reaction: $E - OH + HOH \leftrightarrow E - OH_2^+ + OH^-$, which is accompanied by an increase in the pH of the suspension.

Table

Surface acidity characteristics of samples of thermally expanded and modified forms of phlogopite.

No	Sample	pH_0	pH_{st}	$\Delta p H_s$
1	TS-Phl	6.05	6.37	0.32
2	1H-TS-Phl-1	6.03	6.23	0.20
3	2H-TS-Phl-1	5.91	6.09	0.18
4	3H-TS-Phl-1	5.73	5.89	0.16
5	6H-TS-Phl-1	5.44	5.68	0.24