Fig.1. In-plane resistivity $\rho(T)$ of the 100 nm-thick YBCO film as a function of *T* for different values of an applied magnetic field up to 8 T. The red line designates extrapolated normal-state resistivity $\rho_N(T)$. The arrow defines *T** for the sample.

INTRODUCTION

It is believed that understanding the mechanism of electron pairing in high-temperature superconductors (HTSCs) will indicate the direction of synthesis of superconductors with a desired high T_c . For this, it is necessary to study the properties of HTSCs, especially cuprates, in the normal state, where the pseudogap (PG) is opened at $T^*>>T_c[1,2]$. It is worth noting that the PG state refers to a range of temperatures and energies where the density of states in a superconductivity is not set fully developed. This state near T_c is sensitive to the influence of a magnetic field, which can further modify the transport properties of a HTSC. Obviously, applying of an external magnetic field is one of the promising methods to study superconducting properties *of cuprate HTSCs.*

In our work, we studied a high quality 100 nm-thick YBCO film with T_c = 88.7 K in zero magnetic field (Fig. 1). Resistive measurements were carried out in a magnetic field up to 8 T in H//ab *configuration (Fig. 1 and 2).*

PSEUDOGAP ANALYSIS

[1] A. L. Solovjov, V. M. Dmitriev, *Low Temp. Phys.* **32,** 576 (2006).

[2] A. L. Solovjov, L.V. Omelchenko [et all], *Physica B.* **493**, 58 – 67 (2016).

[3] E.V. Petrenko, L.V. Omelchenko [et all], *Low Temp. Phys.* 47, 1148-1156 (2021).

[4] R. Peters and J. Bauer, *Phys. Rev. B* **92**, 014511 (2015).

Fig.3. Dependences of lnσ′ vs lnε of the studied 100 nm-thick YBCO film plotted in the whole temperature range from *T** down to Ginzburg temperature T_G at different magnetic fields (0, 1, 3 and 8 T) in comparison with Eq.(2) (solid red curves 1). Down to T_G , *designated as ln*(ε_G) *in the*

where $\rho_N(T) = \underline{a}T + \rho_0$ *is the resistivity of the sample in the normal state, extrapolated to the low temperature range. Accordingly, a determines the slope of the linear dependence* $\rho_N(T)$, and ρ_0 is the residual resistance cut off by this line along *the Y axis at* $T = 0$ *.*

figure, the mean-field theory operate with decreasing T. Insert: *lno⁻¹* as a function of ε . Solid line indicates the linear part of the curve between ε_{c01} and ε_{c02} . Corresponding ln ε_{c01} and ln ε_{c02} are marked by arrows in the main panel. The slope α^* determines the parameter $\varepsilon^*_{c0} = 1/\alpha^*$.

In our approach, in order to explicitly describe the PG temperature dependence Δ(T) under the influence of external magnetic fields, we use an equation proposed within the framework of the local pair (LP) model [1, 2], to describe the experimentally measured* $\sigma'(T)$:

Fig.2. Normalized resistivity of the studied sample in the range of superconducting transition for different values of an applied magnetic field up to 8 T. The horizontal lines (0.9 ρ_n) and (0.1 ρ_n) help to determine onset and offset values of T_c , respectively, where ρ_n is the resistivity, below which the superconducting transition debegins.

 $0 \leftarrow$ $\begin{array}{c}\n2 \\
\hline\n2\n\end{array}$ $4 \nmid \frac{1}{6}$ 6 8 | | -7 -6 -5 -4 -3 -2 -1 0 $0 \, \mathsf{L}$ $\begin{array}{c} \n\cdot \\
2 \end{array}$ $4 \mid$ $6 \mid$ 8 | T^*_{\searrow} $T^*\diagdown$ $H = 0$ $ln(\epsilon_{c02})$ $\ln(\sigma')$ (Ω cm)⁻¹ $ln(\varepsilon_{c01})$ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 4 6 | **|** 8 α^* = 3 $\begin{bmatrix} 2 & 10 \\ 10 & 10 \\ 0 & 8 \\ 0 & 6 \end{bmatrix}$ $\alpha^* = 3$ $12 \overline{ }$ $\overline{\mathbf{3}}$ $\varepsilon^{*}_{c0} = 1/\alpha^{*}$ $\alpha^* = 3.9$ $\varepsilon_{\text{c}02} = 0.67$ | $(T_{c02} = 160 \text{ K})$ $H = 1 \text{ T}$ $\varepsilon_{_{\rm CO1}} = 0.28$
(T_{c01} = 115 K) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 4 6 $8 \cdot \alpha^* = 3$ $\begin{bmatrix} 2 & 10 \\ 10 & 8 \\ 6 & 6 \end{bmatrix}$ $\alpha^* = 3$ $12 \frac{318}{12}$ $\overline{\mathbf{3}}$ $\varepsilon^{*}_{c0} = 1/\alpha^{*}$ $\alpha^* = 3.8$ $\varepsilon_{\text{c}02} = 0.67$ | $(T_{c02} = 150 \text{ K})$ $\varepsilon_{\rm c01} = 0.28$ $(T_{c01} = 115 \text{ K})$ 1 $\frac{12}{10}$ 6
 $\frac{12}{10}$ $\frac{0.0 \t 0.2 \t 0.4 \t 0.6 \t 0.8 \t 1.0 \t 1.2}{(T_{\text{c01}} = 115 \text{ K})}$
 $\frac{12}{(T_{\text{c01}} = 0.28)}$
 $\frac{12}{(T_{\text{c02}} = 115 \text{ K})}$
 $\frac{12}{(T_{\text{c01}} = 115 \text{ K})}$
 $\frac{12}{(T_{\text{c02}} = 160 \text{ K})}$
 $\frac{12$ $ln(\epsilon)$ $ln(\epsilon_{c02})$ $ln(\epsilon_{c01})$ $0 \vdash$ $2\sqrt{\frac{1}{2}}$ $4 \mid$ 6 8 | -7 -6 -5 -4 -3 -2 -1 0 $0 \, \mathsf{L}$ 2 $4 \cdot \frac{q}{3} \cdot 8$. $6 \vdash$ 8 L 1^{\prime} $ln(\sigma') (\Omega \ cm)^{-1}$ 0,0 0,2 0,4 0,6 0,8 1,0 1,2 4 Lander 6 **A** 8 $\begin{bmatrix} 2 & 10 \\ 10 & 10 \\ 0 & 8 \end{bmatrix}$ (T_cd)
 $\begin{bmatrix} a^* & 4 \\ 1 & 6 \end{bmatrix}$ $12 \overline{ }$ $\mathbf{3}$ $\varepsilon^{*}_{c0} = 1/a^{*}$ $\alpha^* = 4.05$ _o $\alpha^* = 6.91$ $(T_{c02} = 170 K)$ $\varepsilon_{\text{c01}} = 0.24$
(T_{c01} = 110 K) $1'$ $H = 3 T$ $ln(\epsilon_{c01})$ $\ln(\sigma')$ (Ω cm)⁻¹ $ln(\epsilon)$ $H = 8 T$ $ln(\epsilon_{\rm col})$ 0,0 0,2 0,4 0,6 0,8 1,0 1,2 $\ln(\epsilon_{c02})$ 4 - 8 - 9 6 **A** $\begin{aligned} \n\epsilon_{\text{c01}} &= 0.24 \\
\text{(T}_{\text{c01}} &= 110 \text{ K}\n\end{aligned}$ $\varepsilon_{\rm c01} = 0.24$ \mathbf{g} ln(1/ σ), (μ Ω ·Cm)
 σ
 σ $\varepsilon^{*}_{c0} = 1/a^{*}$ $\alpha^* = 4.05$ $\varepsilon_{\text{c02}} = 0.91$ $(T_{c02} = 170 K)$

In this case, the dynamics of pair formation $(1 - T/T^*)$ *and pair breaking (exp[‒Δ*(T)/T]) above T^c are taken into account. Here, T is a current temperature, T* is a PG opening temperature, A⁴ is a numerical factor, ξ^c (0) is a coherence length along the c-axis, ε is a reduced temperature, ε*c0 is a theoretical parameter, Δ*(T)= Δ*(T^G). All this parameters can be determine from the experiment.*

Using 3D Aslamasov-Larkin and 2D Maki-Thompson conventional fluctuation theories we know how to determine mean-field critical temperatures T^c mf, responsible for ε, and ξc (0) [3]. Therefore, here the problem was reduced to finding the appropriate values of A_4 , ε^*_{c0} *and* $\varDelta^*(T_G)$ *. Fig.3 shows some of the corresponding sets of σ'(T)* calculated for different H. *Having obtained reliable data of the fitting parameters, we plotted series of Δ*(T,H) (Fig. 4), using corresponding equation for* Δ ^{*}(T) [1-3].

$$
\sigma'(T) = \sigma(T) - \sigma_N(T) = \frac{1}{\rho(T)} - \frac{1}{\rho_N(T)} \quad (1)
$$

It is well-known that the normal state of HTSCs above T is characterized by the linear temperature dependence of the resistivity* $\rho(T) = \rho_{ab}(T)$ (red straight line in Fig. 1). In resistive *measurements, excess conductivity* $\sigma'(T)$ *arises as a result of the PG opening leading to the deviation of* $\rho(T)$ *at* $T \leq T^*$ *from the linearity towards lower values (see Fig. 1), which allows us to determine T*. Accordingly, the excess conductivity is given by the equation:*

$$
\sigma'(T) = A_4 \frac{e^2 \left(1 - \frac{T}{T^*}\right) \exp\left(-\frac{\Delta^*(T)}{T}\right)}{16\hbar \xi_c(0) \sqrt{2\epsilon_{c0}^* \sinh\left(2\frac{\varepsilon}{\varepsilon_{c0}^*}\right)}} \qquad (2)
$$

Fig.5. Curves of $\Delta^*/\Delta^*_{\text{max}}$ (symbols) as functions of T/T* in comparison with the theoretical curves of local pairs density $\langle n_1n_1\rangle$ as functions of T/W [4], at corresponding U/W interaction values: 0.2 (black curve), 0.4 (red curve), 0.6 (green curve). All $\Delta^*/\Delta^*_{\text{max}}$ curves have intentionally the same shift and scaling factors to show the evolution of Δ* more clearly. Note that the shape and magnitude of $\Delta^*/\Delta^*_{\text{max}}$ (H = 0) and U/W = 0.6 tends to coincide. But the local pair density noticeably decreases with increasing field, which can explain the observed increase in R under the action of the field (Figs. 1-2). In this case, the shape of the Δ^*/Δ^* _{max} curves strongly deviates from the theory, suggesting the noticeable change in the interaction of the local pairs with increasing magnetic field.

 $\overline{T^*} \smallsetminus$

 $\overline{T^*}\diagdown$

 $ln(\epsilon_{c02})$

To determine the density of local pars at different H we compared the results in the vicinity of T^c with the Peters-Bauer (PB) theory [4] (Fig. 5).