Real Property in the second se	INFLUENCE OF STRONG MAGNETIC FIELDS ON THE TEMPERATURE	Petrenko E. V. ¹ , Bludova L.V. ¹ , Solovjov A. L. ^{1,2} , Rogacki K. ² ¹ B. Verkin Institute for Low Temperature Physics and Engineering of National Academy of Science of	11th International Conference <i>''Nanotechnologies and</i> <i>Nanomaterials''</i> NANO-2023
INTIBS PAN	DEPENDENCE OF PSEUDOGAP IN YBCO FILMS	 Ukraine, 47 Nauki ave., 61103 Kharkov, Ukraine ² Institute for Low Temperatures and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wroclaw, Poland petrenko@ilt.kharkov.ua 	16 - 19 August 2023

INTRODUCTION

It is believed that understanding the mechanism of electron pairing in high-temperature superconductors (HTSCs) will indicate the direction of synthesis of superconductors with a desired high T_c. For this, it is necessary to study the properties of HTSCs, especially cuprates, in the normal state, where the pseudogap (PG) is opened at $T^* >> T_c[1, 2]$. It is worth noting that the PG state refers to a range of temperatures and energies where the density of states in a superconductor is reduced, but superconductivity is not yet fully developed. This state near T_c is sensitive to the influence of a magnetic field, which can further modify the transport properties of a HTSC. Obviously, applying of an external magnetic field is one of the promising methods to study superconducting properties of cuprate HTSCs.

In our work, we studied a high quality 100 nm-thick YBCO film with $T_c = 88.7 \text{ K}$ in zero magnetic field (Fig. 1). Resistive measurements were carried out in a magnetic field up to 8 T in H//ab configuration (Fig. 1 and 2).

PSEUDOGAPANALYSIS

It is well-known that the normal state of HTSCs above T^* is characterized by the linear temperature dependence of the resistivity $\rho(T) = \rho_{ab}(T)$ (red straight line in Fig. 1). In resistive measurements, excess conductivity $\sigma'(T)$ arises as a result of the PG opening leading to the deviation of $\rho(T)$ at $T \leq T^*$ from the linearity towards lower values (see Fig. 1), which allows us to determine T*. Accordingly, the excess conductivity is given by the equation:

$$\sigma'(T) = \sigma(T) - \sigma_N(T) = \frac{1}{\rho(T)} - \frac{1}{\rho_N(T)} \quad (1)$$

Fig.1. In-plane resistivity $\rho(T)$ of the 100 nm-thick YBCO film as a function of T for different values of an applied magnetic field up to 8 T. The red line designates extrapolated normal-state resistivity $\rho_N(T)$. The arrow defines T^* for the sample.

In our approach, in order to explicitly describe the PG temperature dependence $\Delta^*(T)$ under the influence of external magnetic fields, we use an equation proposed within the framework of the local pair (LP) model [1, 2], to describe the experimentally measured $\sigma'(T)$:

$$\sigma'(T) = A_4 \frac{e^2 \left(1 - \frac{T}{T^*}\right) \exp\left(-\frac{\Delta^*(T)}{T}\right)}{16\hbar\xi_c(0) \sqrt{2\varepsilon_{c0}^* \sinh\left(2\frac{\varepsilon}{\varepsilon_{c0}^*}\right)}} \qquad (2$$

In this case, the dynamics of pair formation $(1 - T/T^*)$ and pair breaking $(exp[-\Delta^*(T)/T])$ above T_c are taken into account. Here, T is a current temperature, T^* is a PG opening temperature, A_4 is a numerical factor, $\xi_c(0)$ is a coherence length along the c-axis, ε is a reduced temperature, ε^*_{c0} is a theoretical parameter, $\Delta^*(T) = \Delta^*(T_G)$. All this parameters can be determine from the experiment.

Using 3D Aslamasov-Larkin and 2D Maki-Thompson conventional fluctuation theories we know how to determine mean-field critical temperatures T_c^{mf} , responsible for ε , and $\xi_c(0)$ [3]. Therefore, here the problem was reduced to finding the appropriate values of A_4 , ε^*_{c0} and $\Delta^*(T_G)$. Fig.3 shows some of the corresponding sets of $\sigma'(T)$ calculated for different H. Having obtained reliable data of the fitting parameters, we plotted series of $\Delta^*(T,H)$ (Fig. 4), using corresponding equation for $\Delta^{*}(T)$ [1-3].

To determine the density of local pars at different H we

Fig.2. Normalized resistivity of the studied sample in the range of superconducting transition for different values of an applied magnetic field up to 8 T. The horizontal lines (0.9 ρ_n) and (0.1 ρ_n) help to determine onset and offset values of T_c , respectively, where ρ_n is the resistivity, below which the superconducting transition debegins.

where $\rho_N(T) = \underline{a}T + \rho_0$ is the resistivity of the sample in the normal state, extrapolated to the low temperature range. Accordingly, <u>a</u> determines the slope of the linear dependence $\rho_N(T)$, and ρ_0 is the residual resistance cut off by this line along the Y axis at T = 0.

 $\ln(\epsilon_{c02})$

 $\ln(\epsilon_{c02})$

-1

0

Fig.3. Dependences of $\ln\sigma'$ vs ln ϵ of the studied 100 nm-thick YBCO film plotted in the whole temperature range from T^* down to Ginzburg temperature T_G at different magnetic fields (0, 1, 3 and 8 T) in comparison with Eq.(2) (solid red curves 1). Down to T_G , designated as $ln(\varepsilon_G)$ in the *figure*, the mean-field theory operate with decreasing T. Insert: $ln\sigma^{-1}$ as a function of ε . Solid line indicates the linear part of the curve between ε_{c01} and ε_{c02} . Corresponding $\ln \varepsilon_{c01}$ and $\ln \varepsilon_{c02}$ are marked by arrows in the main panel. The slope α^* determines the parameter $\varepsilon^*_{c0} = 1/\alpha^*$.

compared the results in the vicinity of T_c with the Peters-Bauer (*PB*) theory [4] (Fig. 5).

Fig.5. Curves of Δ^*/Δ^*_{max} (symbols) as functions of T/T* in comparison with the theoretical curves of local pairs density $\langle n_{\uparrow}n_{\downarrow} \rangle$ as functions of T/W [4], at corresponding U/W interaction values: 0.2 (black curve), 0.4 (red curve), 0.6 (green curve). All Δ^*/Δ^*_{max} curves have intentionally the same shift and scaling factors to show the evolution of Δ^* more clearly. Note that the shape and magnitude of Δ^*/Δ^*_{max} (H = 0) and U/W = 0.6 tends to coincide. But the local pair density noticeably decreases with increasing field, which can explain the observed increase in R under the action of the field (Figs. 1-2). In this case, the shape of the Δ^*/Δ^*_{max} curves strongly deviates from the theory, suggesting the noticeable change in the interaction of the local pairs with increasing magnetic field.

[1] A. L. Solovjov, V. M. Dmitriev, Low Temp. Phys. 32, 576 (2006).

[2] A. L. Solovjov, L.V. Omelchenko [et all], Physica B. 493, 58 -67 (2016).

[3] E.V. Petrenko, L.V. Omelchenko [et all], Low Temp. Phys. 47, 1148-1156 (2021).

[4] R. Peters and J. Bauer, *Phys. Rev. B* 92, 014511 (2015).