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Introduction
Modern experimentally obtained and studied metallic nanosystems are characterized by ∼ 10÷100 nm.
Due to the ”quantum-size effect”, the physical and mechanical properties of such nanosystems are sig-
nificantly different from bulk ones. The presence near the ”metal-vacuum” interface of a near-surface
electron layer, the thickness of which reaches the order of two lattice periods of an ideal metal (with-
out ”metal-vacuum” interface), leads to a change in the mechanical characteristics (Young’s modulus,
Poisson’s ratios, force constants, etc.) of such nanosystems. The works [1, 2] consider models for
describing such changes within framework of solid media mechanics, which doesn’t take into account
the discreteness of the ion subsystem and therefore requires some unreasonable assumptions (in par-
ticular, the presence of a mass flow). In works [3, 4] proposed a quantum statistical approach to the
description of the thermodynamic characteristics of nanoscale metal systems, that takes into account,
on the contrary to [1, 2], discreteness of the ion subsystem. In such approach the change of the ion
density in the near-surface area is caused by the change of the volume of the elementary lattice due to
the deformation.

1. Model
Let’s consider semi-infinite metal system, that consists of N positively charged ions with a charge
value Z|e| (where e - is the electron charge) and of NZ of conduction electrons. Ions are placed in
the nodes R⃗n = (x

(n)
1 , x

(n)
2 , x

(n)
3 ) where x

(n)
i – the Cartesian coordinates (i = 1 ÷ 3, n = 1 ÷ N), in the

coordinate system (x1, x2, x3), axis Ox3 of which is perpendicular to the ”metal-vacuum” interface.
The lattice structure of ions is periodic in the areas parallel to the interface.

Conduction electrons have coordinates r⃗i = (x
(1)
i , x

(2)
i , x

(3)
i ), i = 1÷NZ.

Figure 1: The model scheme. ◦ - ions of a real lattice; • - ions of an ideal (without interface) lattice; • - conduction electrons.

The Hamiltonian of a such model is:

H = He + V + Vei, (1)

where

He = − ℏ2
2m

NZ∑
i=1

∆i +
1

2

NZ∑
i<j

e2

|r⃗i − r⃗j|
(2)

is the Hamiltonian of interacting subsystem of conduction electrons (ℏ = h/2π), h - the Planck con-
stant, m - a mass of electron, ∆ - the Laplace operator;

Hi =

N∑
i=1

P⃗n
2

2M
+

1

2

N∑
n<n′

Ze2

|R⃗n − R⃗n′|
(3)

is the Hamiltonian of the ion subsystem which further we will consider as classical (P⃗n – impulse of
ion and M – is its mass);

Vei =

NZ∑
i=1

N∑
n=1

ω(R⃗n − r⃗i) (4)

is a summand that describes electron-ion interaction.
Choosing as a ”reference-system” a system of electrons in the field of a positive ”jellium” [3] for a

thermodynamic potential Ω (in the adiabatic approximation) of proposed model (1)-(4) we obtain

Ω = Ωjell + Ωie +Hii, (5)

where Ωjell – a thermodynamic potential of a semi-infinite ”jellium” [3, 4] and.

Ωie = − 1

β
ln exp

{
− β(δE(1) + δE(2) + ...)

}
, (6)

where δE(j) ≡ δE(j)(R⃗i, R⃗n) – an energy of subsystem of semi-infinite metal (model (1)-(4)) of j − th

order by potential Vie. In the approximation of ion-paring (j = 1, 2) we have the effective Hamiltonian
of the ion subsystem for the model (1)-(4):

H =

N∑
n=1

P 2
n

2M
+

N∑
n=1

Φ1(R⃗n) +

N∑
n,n′=1

Φ2(R⃗n, R⃗n′), (7)

where according to [4]:

N∑
n=1

Φ1(R⃗n) = −i
N

V

∑
q⃗

∑
k

Sk(q⃗)δωk(q⃗)W
(1)
k (q⃗), (8)

and δωk(q⃗) is defined by a relationship

δω(R⃗) =
1

V

∑
q⃗

∑
k

δωk(q⃗) exp
{
− i(q⃗, R⃗||)− ikx3

}
,

R⃗|| = (x1, x2), R⃗ = (R⃗||, x3),

Sk(q⃗) =
1

N

N∑
n=1

exp{−i(q⃗, R⃗||)− ikx3}.

is a geometrical structural factor of the ion subsystem,
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′
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(q⃗1, q⃗2).

(9)

Correlation functions W(1)
k (q⃗) and W

(2)
k1,k2

(q⃗1, q⃗2) are defined in [4]. V = SL is a volume of the system,
S is an area of a surface (S → +∞) and L – area of the change of normal to the surface of coordinate
x3 of electron (x3 ∈ [−L/2, L/2], L → +∞). Particularly, for the model (1)-(4)

W
(i)
k (q⃗) = iSδq⃗,0

∫
dx3e

ikx3n1(x3),

where n(x3) =
NZ
V F1(x3) is a function of the density distribution of electrons in the ”jellium” model.

F1(x3) is the Boholubov’s unary distribution function; δq⃗,0 is the Kronecker symbol.
For a plane interface surface ”metal-vacuum”

Φ1(R⃗n) =

∫
δω(q⃗ = 0|x3 −X

(n)
3 )n(x3), (10)
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1

2π
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0
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and
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(12)

J0(q⃗, R⃗
||) is the zero-order Bessel function, R|| = |R⃗|||.

2. Calculation of the volume change for an elementary lattice
In the spatially limited metal systems over the surface emerging a negatively-charged layer of electrons
with a thickness (1÷ 2)d, where α is a period of the lattice without the interface (see [4]). Interaction
of ion lattice subsystem with such layer leads to the displacement vecξn of ions positions, this dis-
placement is relative to positions R⃗n

0 in the ideal (without the interface surface) metal. Displacement
ξ⃗n can be found from condition:

▽
ξ⃗n
F = 0, (13)

where free energy
F = − 1

β
lnSp e−βH ,

and
Sp [.] =

∫
dp⃗

∑
R⃗n

{...}, ξ⃗n = R⃗n − R⃗0
n.

Deriving the Hamiltonian of the ideal system H from (7) (for it R⃗n = R⃗0
n) in the quadratic approxi-

mation for a small (|ξ⃗n| ≪ α) displacements we obtain for (13):

〈
▽⃗

ξ⃗
[Φ1(R⃗m) +

N∑
n′=1

Φ2(R⃗m, R⃗n′])]0
〉
+

+ β(ξm,
〈
▽⃗ξ[Φ1(R⃗m) +

N∑
n′=1

Φ2(R⃗m, R⃗n′])]0
〉
)+

+ Âξ⃗m +

N∑
n′=1

(D̂mn′ + D̂n′m)ξ⃗n′ = 0.

(14)

Here
Â =

〈
(▽⃗

ξ⃗n
, ▽⃗

ξ⃗n
Φ1(R⃗n))|0

〉
D̂ =

〈
(▽⃗

ξ⃗n
, ▽⃗

ξ⃗n′
,Φ2(R⃗n, R⃗n′))|0

〉
In (14) 〈

...
〉
=

Sp e−βH0e−βH1

Sp e−βH0
, H = H0 +H1,

H0 is a Hamiltonian in (7) in which R⃗n = R⃗0
n, (..., ...) is a dot product and [..]|0 means that after the

calculations we put R⃗n = R⃗0
n.

Equation (14) in the case when n(x3) = NZ/V has only a trivial solution ξ⃗m ≡ 0.
In the case if the simple cubical lattice (ξ⃗m = (0, 0, ξ)) when the condition of a local equilibrium

▽⃗ξ
∑N

n′=1

∑
Φ2(R⃗m, R⃗n′) = 0 [5], (14) become simplified and allow a numerical solution. Calculating

diagonal elements of a stress tensor σii = ∂F/∂ξ
(i)
m , (i = 1, 2, 3) when taking into account conditions

σ33 = P3, where P3 is a normal to a interface surface of the force component that affects from the side
of the electrons layer from condition

Sp σ =
∆V

V

We calculated a relative change ∆V
V :

n 1 2 3 4 5
∆V/V 0.21 0.15 0.10 0.05 0.001

Knowing ∆V
V it is easy to calculate the change of the ion density .
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