
A square equation is obtained for the S-matrix from (8). 

Fig. 1. Potential profile of an open multi-cascade nanostructure 

Properties of spectral characteristics of electron 
quasistationary states in an open multi-cascade nanostructure 

Seti Ju., Vereshko E., Voitsekhivska O., Tkach M.  
Department of Theoretical Physics and Computer Simulation, Yuriy Fedkovych Chernivtsi National University,  

2, Kotsyubinsky Str., 58012, Chernivtsi, Ukraine 
E-mail: j.seti@chnu.edu.ua 

Motivation 
With the appearance and development of nanodevices, the functioning of which is ensured by 

electronic transport through resonant tunneling nanostructures, the relevance of the theory of physical 
properties of quasi-particles in open nanostructures has significantly increased. Despite the 
significant progress of experimental research, the theory of physical processes in such devices is still 
not complete. The main problems in its development are related to mathematical complexities caused 
by non-localized wave functions and the quasistationary spectra of quasiparticles. Therefore, in the 
majority of theoretical papers, the research is performed in simplified models. 

In this paper, we propose the developed theory of spectral characteristics of quasistationary 
states of an electron in a multi-cascade open nanostructure, being a typical element of a quantum 
cascade detector. For this, in the approximation of effective mass and rectangular potentials, using 
the transfer matrix method based on the solutions of the Schrödinger equation, an exact expression 
for the S-matrix is obtained. Its poles determine the resonance energies and resonance widths 
(lifetimes) of electron states. 

Theory of S-matrix in open multi-cascade nanostructure 
We consider an N-cascade nanostructure (Fig. 1), placed into an external bulk semiconductor 

medium-well. Taking into account that the magnitudes of the lattice constants of wells and barriers of 
semiconductor materials in isotropic nanostructures of typical quantum cascade detectors (QCD) [1] 
are close to each other, we will develop the theory of quasistationary states (QSS) of the electron in 
the model of position-dependent effective mass and rectangular potentials. In the Cartesian 
coordinate system with z-axis perpendicular to the nano layers of the structure, the effective mass 
and potential energy of the electron is written in the following form: 

where                                are  the  coordinates  of  the  hetero interfaces in the i-th cascade;                          ;  

in a separate cascade; U – heights of potential barriers; 𝑚𝑚𝑤𝑤, 𝑚𝑚𝑏𝑏 are the effective masses of the 
electron in bulk analogues of well and barrier materials. 

Properties of spectral parameters of electron QSSs in 
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and the normality condition 
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1. The theory of spectral characteristics (resonance energies and resonance widths) of the 
electron QSSs in an open multi-cascade nanostructure is developed in the approximation of effective 
mass and rectangular potentials, using the transfer matrix method based on accurately obtained 
analytical expressions for the scattering matrix. 

2. For the example of a GaAs/Al0.33Ga0.67As multi-cascade resonant-tunnel structure with 
three-well cascades, the peculiarities of resonance energies and resonance widths are investigated 
depending on the number of cascades. It is established that in the N-cascade nanostructure, in the 
energy regions that do not exceed the height of the potential barriers, four resonance complexes are 
formed. In each of which the poles of the S-matrix uniquely determine the resonance energies and 
resonance widths of the N electron QSS. 

3. It is shown that with an increasing number of cascades, the resonance energies of the QSSs 
in the complexes form corresponding bands, the widths of which almost do not change at N>10. At 
the same time, anti-crossings appear at the dependences of energies on N. States with the energies 
on the horizontal sections between anti-crossings are characterized by significant values of 
resonance widths due to the localization of the electron in the extreme left or right cascades, and 
their values weakly depend on N. The widths of all other states localized in the internal cascades of 
the multi-cascade resonance-tunnel structure decrease rapidly with increasing number of cascades. 

Conclusions 

which are determined by all elements of the T-matrix and define two orthonormal wave functions. 
In general, wave functions in the external semi-infinite media are written as linear combinations 

of both independent solutions. 

The evolution of spectral parameters of electron QSS in multi-layer open nanostructure, 
depending on the number of cascades in it, is studied in a model of three-well cascade with GaAs 
wells of widths 𝑎𝑎1=6.8 nm, 𝑎𝑎2=2.4 nm, 𝑎𝑎3=3.7 nm and with Al0.33Ga0.67As-barriers of the same 
thickness (3 nm). Geometric sizes of potential wells and barriers in such a cascade simulate the 
general energy scheme of a single-well (𝑎𝑎1) active region with two operating states (n=1 and n=4), 
transitions between which occur with the absorption of electromagnetic radiation, and a double-well 
(𝑎𝑎2, 𝑎𝑎3) extractor with two states (n=2 and n=3) of the phonon ladder. The physical parameters of the 
structure are known: 𝑚𝑚𝑤𝑤 = 0.067 𝑚𝑚𝑒𝑒, 𝑚𝑚𝑏𝑏 = 0.095 𝑚𝑚𝑒𝑒, U = 276 meV. 
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The one-dimensional Schrödinger equation for an electron is written as 
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its solutions must satisfy the fitting conditions at the interfaces between all hetero layers of the studied 
nanostructure 
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The wave function from equation (3) is found exactly 
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S=S(E) is the scattering matrix. 
All unknown coefficients 𝐴𝐴𝑖𝑖,𝑗𝑗 , 𝐵𝐵𝑖𝑖,𝑗𝑗 and the S-matrix are uniquely defined from the fitting conditions (4) 
and the normality condition (5). Applying the method of the transfer matrix (T) [2, 3], the relationship 
between the coefficients of the wave functions in external semi-infinite media is obtained as  
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with known coefficients and S-matrix 
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It is known from the theory of scattering that in the complex energy plane (𝐸𝐸 = 𝐸𝐸′ − 𝑖𝑖𝑖𝑖𝑖𝑖) the poles of 
the S-matrix, which are found as solutions of the equation  
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Dependences of resonance energies and widths of electron states on the number of cascades 
(N) in the nanostructure, numerically calculations by the solution of equation (13), are shown in Fig. 2. 
Figure proves that if the number of cascades N increases, the resonance energies of the QSS form 
the bands (numbered by n in the figure), the widths of which almost do not change when N>10. We 
should note that when n=2 and n=4, the anti-crossings are observed at        functions of N. States 
with energies on horizontal sections located between anti-crossings are characterized by significant 
values of resonance widths (short lifetimes), Fig. 2b. In these states, the electron is either weakly 
localized in the second well (𝑎𝑎2) of the extractor (at n=2) of the last stage of the multi-cascade 
structure, or in the active well (𝑎𝑎1) of the first stage (at n=4). From the latter it can easily tunnel into 
the outer semi-infinite well. In the state with energy        , the electron is characterized by a 
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significant resonance width, Fig. 2b. It is caused by its weak localization in the active well (𝑎𝑎1) of the 
first cascade due to the high probability of tunneling into the left semi-infinite well. 

The widths of all other states (Fig. 2b) have a qualitatively similar dependence on N. It shows the 
decreasing of    with an increasing number of cascades. Their behavior is associated with an 
increasing lifetime of an electron in the layers of internal cascades, due to a decrease in the 
probability of an electron exiting a multi-cascade nanostructure to the outside with the gradual 
"addition" of new external cascades.   

We should also note an interesting feature characteristic of the resonance widths determined by 
the poles of the S-matrix, which lays in the fact that for arbitrary N the sum of the widths of all QSSs in 
the n-th complex is equal, with high accuracy, to the width of the n-th state in a single-cascade (N=1) 
structure ∑ Γ𝑛𝑛𝑛𝑛𝑆𝑆 (𝑁𝑁)𝑁𝑁

𝑟𝑟=1 = Γ𝑛𝑛𝑆𝑆(𝑁𝑁 = 1). 
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Fig. 2. Resonance energies         (a) and resonance widths        (b) of electron QSS as functions of 
the number of cascades (N) in the nanostructure   
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