

High-speed heating of oxidized graphite particles for their thermoexpanding in reactors of different types of feedstock loading. CFD simulation.

Strativnov E.V.¹, Khovavko A.I.¹, Nie Guochao², Pu-Guang Ji³

¹ Gas Institute of National Academy of Sciences of Ukraine, 39 Degtyarivska str., 03113 Kyiv, Ukraine. *E-mail: estrativnov@gmail.com;*

² School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China;

³ School of Materials Science & Engineering and Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, China.

The article studied in detail the process of thermally expanded graphite generation (TEG) [1] due to high-speed heating of oxidized graphite (OG) particles [2] in methane-fuelled vertical

Three types actually operating reactors served as initial data for the calculations (Fig. 1), which differ in the method of heat supply to the initial product [3]. The methane combustion process, the supplying of OG particles into the hot zone and their heating during thermal expanded are simulated (Fig. 2).

out of the hot zone. As a result, the particle heating rates for these reactors types were obtained (Fig. 3) and their technological features were analyzed.

Fig. 3. Particle heating rate in the reactors under

study.

1. E. Strativnov, A. Kozhan, and B. Bondarenko, Pat. 99875 Ukr., MPK (2011) C01B 31/04. Method for the production of thermally expanded graphite, – 10.10.2012.

2. Boehm H, Setton R, Stumpp E (1994) Nomenclature and terminology of graphite intercalation compounds (IUPAC recommendations 1994). Pure Appl Chem 66(9):1893–1901. https:// doi. org/ 10. 1351/ pac19 94660 91893 3. Strativnov E. (2015) Design of Modern Reactors for Synthesis of Thermally Expanded Graphite. Nanoscale Research Letters. 10:245. https://doi.org/10.1186/s11671-015-0919-y.

