Structure and mechanical properties of PVA – PEG – TiO₂ hydrogel composites cross-linked by electron irradiation

Sytnyk I.O.^{1,*a*}, Demchenko V.L.^{2,3}, Dolgoshey V.B.¹, Iurzhenko M.V.^{2,3},

Neimash V.B.⁴, Monastyrsky G.E.¹, Mamunya Y.P.^{2,3}

¹ NTUU "Igor Sikorsky Kyiv Polytechnic Institute". 37, Prospect Beresteiskyi, Kyiv-03056, Ukraine.

^a E-mail: sytnyk.illia@lll.kpi.ua

² E.O. Paton Electric Welding Institute, NASU 11, Kazymyr Malevych str. Kyiv-03150, Ukraine.

³ Institute of Macromolecular Chemistry, NASU, 48, Kharkivske shosse. Kyiv-02160, Ukraine.

⁴ Institute of Physics, NASU 46, Nauky Ave., Kyiv-03028, Ukraine

Introduction

Hydrogels are three-dimensional hydrophilic polymer networks that can absorb and store significant amounts of water and biological fluids. They are widely used in the medical and pharmaceutical industries. Ionizing radiation is favored for crosslinking hydrogels, improving their mechanical characteristics and resistance to high temperatures. Hydrogel filling with TiO₂ particles is of interest due to their photocatalytic properties. Comprehensive characterization, including structural studies, is necessary to understand the hydrogel's proper-

Microscopic images

Tensile properties

ties, including its mechanical aspects.

Synthesis

The synthesis process involves dissolving PVA 17-99 and PEG-6000 in water, both with continuous stirring. The PEG solution is then added to the PVA solution and stirred for 10 minutes.

Next, TiO₂ particles with a 320 nm diameter are Figure 2: Photographs of a sample containing added to the PVA-PEG solution in different quanti- wt.% TiO₂, magnified at 300 times. ties (1%, 0.1%), and 0.01% of the mass of dry matter). The resulting solutions form gels that are refrigerated at 4°C for 4 days. After cooling, the gels are irradiated with electrons (4 MeV, 33 kGy).

Results and discussions

X-ray Structural Analysis

Figure 4: Stress-strain curve for samples with different concentrations of TiO₂.

0.01% TiO ₂	0.1% TiO ₂	1% TiO ₂
$\sim 164\%$	$\sim 131\%$	$\sim 120\%$
$16,2\pm 0,5$ kPa	$20, 2 \pm 0, 4$ kPa	$23, 2 \pm 0, 5$ kPa

Tensile tests reveal that as the concentration of TiO₂ increases, both tensile strength and maximum elongation to break decrease. This suggests that TiO_2 particles act as defects in the polymer network, affecting its mechanical properties.

Bactericidal effect

Figure 5: Bactericidal effect study of TiO₂ 1% samples: a – Escherichia coli; b – Staphylococcus aureus.

Particle size

Figure 1: Dependence of the relative frequency distribution of TiO₂ particles on their diameter.

The size of the particles and their distribution were determined by the DLS method. nm, while crushed particles had an average diameter of 320 nm. The polydispersity index, reflecting heterogeneity, was 12% for unground TiO₂ and 9% for ground particles.

20, degrees

Figure 3: X-ray diffraction patterns of TiO₂ powder (1), PVA-PEG (2), and PVA-PEG-TiO₂(3) samples irradiated with electrons

X-ray studies of the initial powder TiO₂ revealed an anatase crystal structure with characteristic peaks (101), (004), and (200) observed in the diffractogram (Fig. 3, curve 1).

the PVA–PEG polymer matrix and TiO₂ particles.

The lack of a zone without microorganisms indicates the absence of antimicrobial activity, possibly due to the relatively large size of TiO₂ particles (320 nm) used in the hydrogel synthesis.

Summary and conclusions

 TiO_2 particles size (320 nm) were measured for The diffraction pattern of a PVA–PEG sample con- synthesis, and microscopic photographs of their taining 1 wt.% TiO₂ also displayed peaks corre- distribution in the hydrogel were obtained. X-Non-crushed TiO₂ had an average diameter of 370 sponding to TiO₂. However, these peaks showed ray structural studies suggest a potential interaction a slight shift in angular position compared to the between TiO₂ and the PVA-PEG polymer matrix. original powder (3, curve 3, indicated by an ar- TiO₂ particles act as defects, decreasing the hyrow). This suggests a possible interaction between drogel's mechanical properties. The sample with 1 wt.% TiO₂ showed no antimicrobial activity.