
Figures 1 a, b and Table 1 show the following properties of the

shape function . . Its shape is determined by the

superposition of three groups (respectively to the number of

modes) of an infinite number of renormalized peaks. The peaks

of the function in Figure 1 and their parameters in Table 1 are

indicated by colored groups of numbers ( ) , to distinguish

the mixed and unmixed states, which form the corresponding

peaks.

The first peak corresponds to the ground (phononless) state of

the system (000). Next, we highlight three groups of an infinite

number of peaks, which are formed by unmixed single-mode

satellite states of each individual mode, marked with the

following colors: ( ) – red, ( ) – green, ( ) – blue.

All the remaining peaks are formed by mixed two-mode ( ),

( ), ( ) and mixed three-mode ( ) satellite

states and are marked in black. Satellite peaks are formed by two

types of states: a) non-degenerate (untoned in Table 1), b)

degenerate (toned in Table 1).

The peaks of the function are formed by the

non-degenerate states of each individual mode ( ), with an

increase in the number of only rapidly decrease, and the peaks

formed by the degenerate states change differently, since their

values are formed by the components of states from three modes,

the heights of which depend both on the values of , as well as

on the values . Generally, with increasing energies ( ), the

average peak intensity decreases. This is due to the decreasing

effects on the function of multiphonon processes

due to the interaction of a quasiparticle with phonons of all

modes.

Conclusions
1. On the basis of the Frohlich-type Hamiltonian, which

describes a localized quasiparticle interacting with three-mode

dispersionless phonons in the Davydov’s model with decay at

T=0K, an analytical Fourier calculation of the image of the

retarded Green's function was performed. It made possible to

obtain and analyze the frequency dependence of its imaginary

part, which characterizes the shape function of the absorption

band and its spectral parameters.

2. It is shown that the three-mode system has a complex

structure of the absorption band shape-function, which is a

superposition of Lorentzian peaks corresponding to the three

groups of unmixed phonon modes and peaks of all possible

combinations of their satellite states.
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Motivation for the research
The rapid development of nanophysics has significantly

actualized the theory of the interaction of systems of multi-band

(multi-level) quasiparticles with multi-mode phonons. Such

problems are important, in particular, for understanding of the

physical processes occurring in nanoheterostructures, which are

the basic structural elements of quantum cascade lasers and

infrared detectors.

Theory and analysis of results
We study the influence of dissipative mechanisms (taken into

account by phenomenological decay) on the formation of

properties of coefficient of the electromagnetic field absorption by

localized quasiparticles interacting with one- and two-mode

polarization phonons at T = 0K in Davydov’s model of the system.

From Kubo's theory [1, 2, 4] about the response of an isotropic

system to external action it is known that the absorption coefficient

of the electromagnetic field_______is related with the Fourier

image of the retarded Green's function ______ of quasiparticle by

the expression

Here ___ is a function of the shape of the electromagnetic field

absorption band,_____ is a dipole moment,__ is a unit cell

volume,____is a frequency of dipole transition,___is an

electromagnetic field frequency, __ is a group velocity.

Further, studying only the shape of the field absorption band,

we consider a system consisting of a localized quasiparticle

(exciton, impurity, etc.) interacting with non-dispersive three-mode

polarization phonons at T = 0K. The Hamiltonian of this system

(excluding dissipative processes) in the representation of

occupation numbers over all variables can be written as

Here___is an energy of uncoupling quasiparticle, is an energy

of - th phonon mode,______is a quasiparticle binding function

with -th phonon mode. Quasiparticle_ ______and phonon

________ operators of second quantization satisfy Bose

commutative relationships. In Davydov’s model for the system

under research, it is fulfilled the condition_______________ ,

which means that the eigenvalues of both of these operators (__і

__) can be either 1 or 0 , interpreted as a condition of presence (1)

or absence (0) of "pure" quasiparticle state.

To calculate the Fourier image of the retarded Green's function

without a decay, the Hamiltonian (4) is first diagonalized by the

transition from the operators _______to new ones _____ using a

unitary operator [3]. As a result, the Hamiltonian (2) in the new

operators gets a diagonal form

Where is an energy of new elementary excitations.

Now at T = 0K the two-time retarded Green's function

taking into account the Hamiltonian (3), the relationship between

old and new operators and using Weyl operator identity [1,2], the

exact expression is obtained

where___is a dimensionless parameter characterizing the binding

energy of a quasiparticle with _ -th mode of phonons.

The integration of expression (5) is performed exactly.

Introducing phenomenological decay by replacing a small value

(_____) by a finite value ( ____) a representation of the Fourier

image of the retarded Green's function is obtained, which is

convenient for physical analysis, from which the shape function is

obtained in the form

))~(( 

))~(( G

(1));~(
4

)~(

22





 

g

f

vv

d );~(Im)~(  G

.0),~(   i

)~(
erd  v

f 

gv

(2)

    .ˆˆˆˆ)(2/1ˆˆˆˆˆ
3

1

0







   qqkk

qk

qq

q
k

k

k
BBAAqBBAAE 









 








 

k

k

k
AAnn 



 ˆˆˆˆ2  

0E
)(q




)ˆ,ˆ(
kk

AA 

)ˆ,ˆ( qq BB 




2n̂

n̂



qk
BA 

ˆ,ˆ

qk
ba 

ˆ,ˆ

(3)

);2/1ˆˆ(ˆˆˆ   

q

qqk

k

k
bbaa










E ,))((
21

0  

q

qE






 E

E

(4)  ,0)]0(ˆ),(ˆ[0)(,
kk

AtAtitkG 


 

(5)

  ;1expexp)(,
2

1 























 









 titi
titkG

E
,)(

22
 

q

q



 





00γ 

(6)

(7)

 

   

 

 
.

][!!!

][!!

][!!][!!

][!

1
);;;(

1,,

22
33221321

321

1,

22
332232

32

1, 1,

22
33131

31
22

22121

21

3

1 1

22223213

321

321

32

32

21 31

3121









































 



























nnn

nnn

nn

nn

nn nn

nnnn

n

n

PnPnnnnn

PnPnnn

PnnnnPnnnn

Pnn
eI
























 







0 1 2 3 4 5 6
0

1

2

3

4

5

д)

I 3


)

=0.5 =0.6 =0.1 

321 
2,0,0

0,2,0

1,0,11,1,0

0,0,1

0,1,0

1,0,0



0,0,0

3,0,0

2,1,0 2,0,1

0,3,0

1,1,10,1,1 1,2,0

4,0,0 5,0,0

0,0,2

0 1 2 3 4 5 6
0

1

2

3

4

5

е)

I 3


)

=0.6 =0.5 =0.1



321 
2,0,0

0,2,0

1,0,11,1,0

0,0,1

0,1,0

1,0,0

0,0,0

3,0,0

0,3,0

1,1,10,1,1 1,2,0

4,0,0 5,0,0

0,0,2

2,1,0 2,0,1

0 1 2 3 4 5 6
0

1

2

3

4

5

в)

I 3


)

=0.5 =0.6 =0.075 



321 

2,0,0

0,2,0

1,0,11,1,0

0,0,1

0,1,0

1,0,0
0,0,0

3,0,0

2,1,0 2,0,1

0,3,0

1,1,10,1,1 1,2,0

4,0,0 5,0,0

0,0,2

0 1 2 3 4 5 6
0

1

2

3

4

5

г)

I 3


)



=0.6 =0.5 =0.075 

321 

2,0,0

0,2,0

1,0,11,1,0

0,0,1

0,1,0

1,0,0
0,0,0

3,0,0

2,1,0 2,0,1

0,3,0

1,1,10,1,1 1,2,0

4,0,0 5,0,0

0,0,2

0 1 2 3 4 5 6
0

1

2

3

4

5

1,1,10,1,1 1,2,0

321 

0,3,0

4,0,0

0,2,0

2,0,0

1,0,11,1,0

0,0,1

0,1,0

1,0,0

=0.5 =0.6 =0.05  

I 3


)



0,0,0

5,0,0

0,0,2

3,0,0

2,1,0 2,0,1

а)

0 1 2 3 4 5 6
0

1

2

3

4

5

б)

а)

321 

I 3


) =0.6 =0.5 =0.05  

4,0,0

0,2,0

2,0,0

1,0,11,1,0

0,0,1

0,1,0

1,0,0



0,0,0

0,0,2

3,0,0

2,1,0 2,0,1

0,3,0

5,0,0

1,1,10,1,1 1,2,0

Figure 1. Evolution of the function at fixed values

P1=1; P2=1.75; P3=2.25; and different sizes , indicated

in the panels of the figure.

The properties of the lower part of the spectrum are best

displayed on the example of panels (a, b) of Figure 1 at the

smallest decay ( ).

So, functions in Figures 1a and 1b differ from each other

(like the other two pairs) only by the replacement of values

( with the same other parameters.

For clarity and understanding of the analysis of the properties of

the functions according to the Figs. 1 a, b, Table 1

shows the calculated values of the coordinates ( ) and

height ( ) of function peaks depending on the phonon

modes ( ) and numbers of the ground and satellite states

Table 1.

Dependencies of coordinates ( ) and heights ( ) of

function peaks ( ) at ( ) fixed values P1=1; P2=1.75;

P3=2.25; and different values indicated in

the panels of Figure 1.
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Here are some convenient denominated variables and parameters

Similar to the case of the two-mode phonons [3], as well as for the

three-mode ones, the calculation and analysis of the properties of

the shape functions is performed for the example of

the system with typical parameters indicated in Figure 1.

Frequency domain , in which the main and satellite

peaks are well identified without "merging" with the background,

the same as in the two-mode system [3].

Figure 1 shows that the peaks of phonon satellites of all

modes are best manifested at small decay values ( ) , and with

its increase, they quickly disappear either in the general

background or in peaks of degenerate states.
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