

HYDROGENATION AND HYDROLYSIS PROPERTIES OF MgH₂ COMPOSITES WITH ADDITIONS OF RMO₃ PEROVSKITES

Zavaliy I.Yu.*1, Berezovets V.V.1, Kononiuk O.P.1, Lutsyuk I.V.2, Vasylechko L.O.2, Kytsya A.R.1, Borukh I.V.1, M.V. Chekailo²

¹ Physico-Mechanical Institute of the NAS of Ukraine. 5, Naukova str., 79060, Lviv, Ukraine, ² Lviv Polytechnic National University, 12 Bandera Street, Lviv 79013, Ukraine

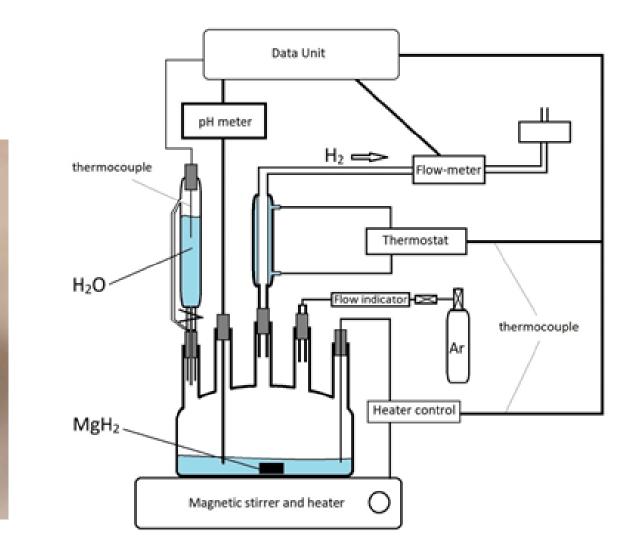
INTRODUCTION AND MOTIVATION

MgH₂ as a light metal hydride has the advantages of high weight capacity (7.6 wt.%), high volume density (110 kg/m³), environment friendly and a fairly low cost. In reaction with water (hydrolysis process) MgH₂ can generate 6.5 wt.% of hydrogen which can be use in fuel cells [1]. Unfortunately, the hydrolysis reaction rate is extremely slow. To increase the yield of hydrogen, solutions of acids and salts are used or the reaction temperature is increased. Another way to improve the kinetics of the reaction is the formation of nanocrystalline hydride. For this, magnesium hydride is synthesized by a high-energy ball milling with catalyst additives. In addition, the reaction area and concentration of defects increases, which allows to significantly reduce the reaction time. In our recent studies, it was shown that the use of Zr₃V₃O_{0.6} suboxide and Zr₃V₃O_{0.6}+C mixture as catalytic additives is an effective way to obtain composites based on MgH₂ with dual applications: for hydrogen gas storage and for hydrogen generation by hydrolysis [2]. Effective sorption/desorption properties when complex oxides with a perovskite structure were added to MgH₂ were demonstrated in [3]. In this work the effect of complex oxides Dy_{0.5}Nd_{0.5}FeO₃ and TbFe_{0.5}Cr_{0.5}O₃ with a perovskite structure on the hydrogenation of magnesium during milling and improvement of hydrogen sorptiondesorption kinetics is shown. Also we tested the obtained MgH₂-based composites for efficient hydrogen generation by hydrolysis.

EXPERIMENTAL DETAILS

Materials: Mg (99.8 %, grit 50-150 mesh), graphite (Fluka, 99.9 %, ≤20 μm) and RTO_3 (Dy_{0.5}Nd_{0.5}FeO₃ and TbFe_{0.5}Cr_{0.5}O₃) nanocrystalline powders prepared by low-temperature sol-gel method.

Reactive ball milling: Fritsch 6 Pulverisette mill, milling conditions: 20 bar H₂; 400 rpm; milling time – 900 min.


Phase-structural analysis: powder XRD (Cu-Kα), FULLPROF software.

All investigated specimens were subjected to <u>hydrolysis</u> at pseudo-isothermal conditions and temperature 25° C. The hydrolysis setup consists of a glass vessel with a flat flanged lid and five necks placed on a magnetic stirrer allowing its heating. The reacting powder and water were added under inert

conditions (in a flow of Ar gas).

RESULTS AND DISCUSSION

MgH₂-based composites were prepared by reactive ball milling (RBM) in hydrogen gas @ 20 bar H₂. We milled magnesium powder (Fluka, 99+%, a particle size of 0,1-0,3 mm) and 2 types of catalytic additives (Dy_{0.5}Nd_{0.5}FeO₃ and TbFe_{0.5}Cr_{0.5}O₃). XRD showed that mechanochemical hydrogenation leads to complete conversion of magnesium into a mixture of α - + γ -MgH₂, and RMO_3 does not interact with H₂ (see Fig. 1).

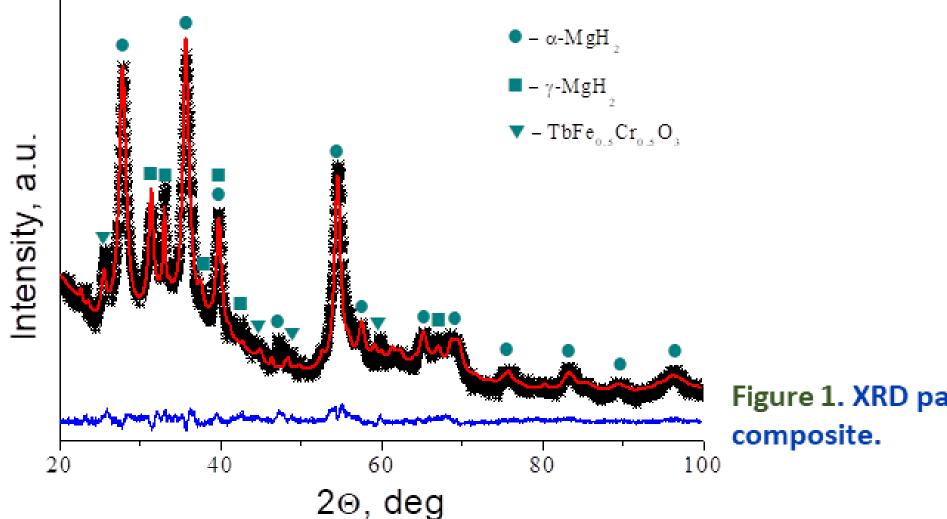


Figure 1. XRD pattern of MgH₂-TbFe_{0.5}Cr_{0.5}O₃ composite.

It was shown by SEM that the obtained composites have a polydispersive morphology and their particle size distributions (PSD) may be fitted by Log-Normal function. The mean size of the particles of MgH₂-RMO₃-C composite is smaller as compared to that of MgH₂-RMO₃. SEM-images and PSD histograms for RMO₃=Nd_{0.5}Dy_{0.5}FeO₃ are shown in Fig. 2.

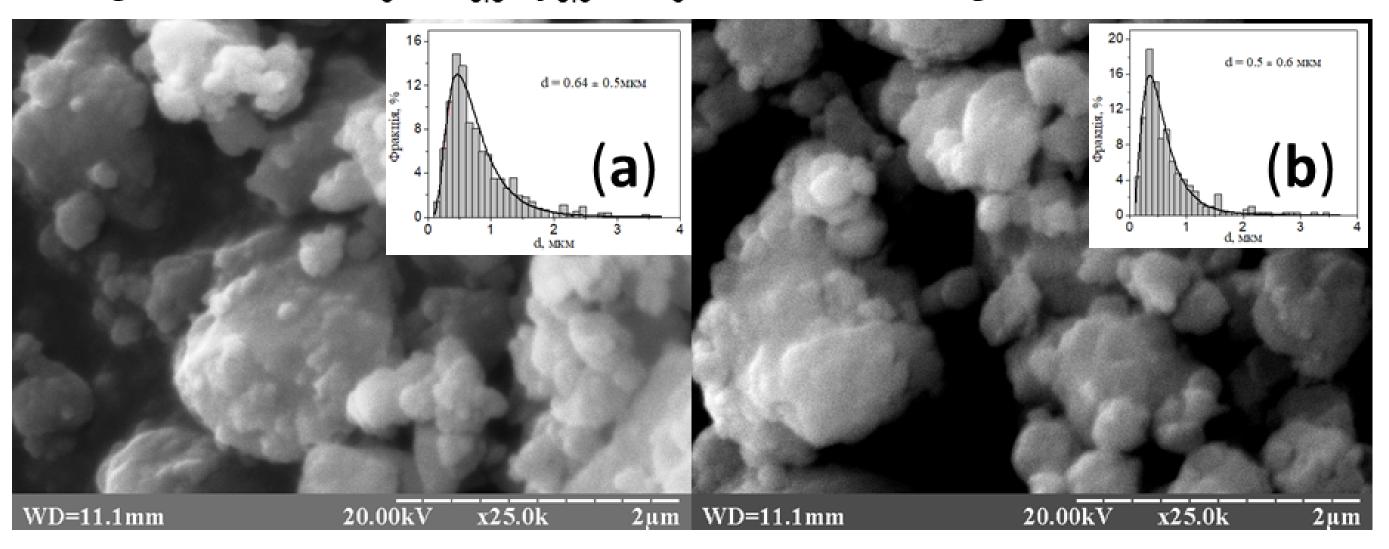


Figure 2. SEM-images of MgH_2 - $Nd_{0.5}Dy_{0.5}FeO_3$ (a) and MgH_2 - $Nd_{0.5}Dy_{0.5}FeO_3$ -C (b) composites. Insertions are the corresponding PSD histograms.

Hydrogen production rate during hydrolysis of MgH₂-based nanocomposites

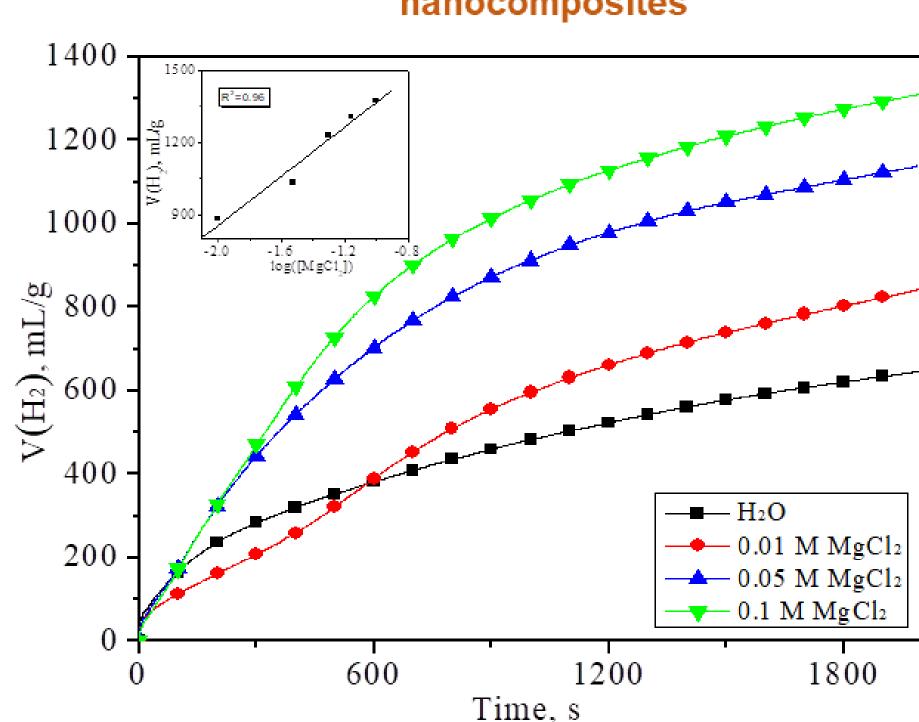


Figure 3. Hydrogen generation from MgH_2 -TbFe $_{0.5}Cr_{0.5}O_3$ -C composites in $MgCl_2$ solutions. Insert shows a dependence of the volume of H_2 released for 2000 s on the log of $MgCl_2$

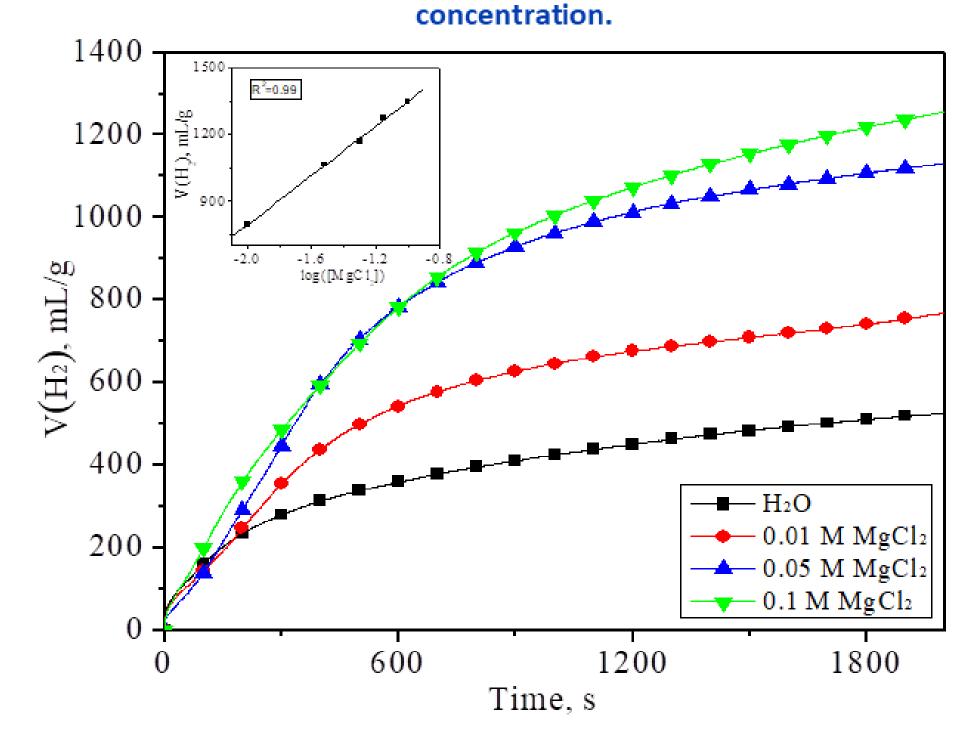


Figure 4. Hydrogen generation from $MgH_2-Nd_{0.5}Dy_{0.5}FeO_3-C$ composites in $MgCl_2$ solutions. Insert shows a dependence of the volume of H_2 released for 2000 s on the log of $MgCl_2$ concentration.

CONCLUSIONS

Mg-RMO₃ and Mg-RMO₃-C (RMO₃ = $Dy_{0.5}Nd_{0.5}FeO_3$ and $TbFe_{0.5}Cr_{0.5}O_3$) were synthesized by ball milling in a hydrogen atmosphere (20 bar). The formation of and γ -MgH₂ was shown by XRD studies. We observed also that the compounds with a perovskite structure do not interact with hydrogen during milling. Thermal desorption studies allowed to estimate the desorption activation energy: 123 kJ/mol for Mg-TbFe_{0.5}Cr_{0.5}O₃ and 147 kJ/mol for Mg-Dy_{0.5}Nd_{0.5}FeO₃ composites. Microstructural studies demonstrated that the addition of graphite results in a more dispersed morphology. The obtained materials demonstrate effective H_2 generation by hydrolysis in MgCl₂ solutions. A strong dependence of the conversion rate from the MgCl₂ concentration was observed. Highest conversion rate reached 82-88% (1200-1300 mL/g) for 30 min of hydrolysis in 0.1 M MgCl₂ solution for MgH₂-RMO₃-C composites.

REFERENCES

[1] Yu. Verbovytskyy *et al*. Hydrogen generation by the hydrolysis of MgH₂ / Materials Science. – 2020. – 56, № 1. – P. 1–14. doi:0.1007/s11003-020-00390-5.
[2] I. Zavaliy *et al*. Hydrogen absorption-desorption properties and hydrolysis performance of MgH₂–Zr₃V₃O_{0.6}H_x and MgH₂–Zr₃V₃O_{0.6}H_x–C composites. J. Energy Storage. – 2023. – 65 doi:10.1016/j.est.2023.10724.

[3] W. Zhang et al Effect of LaFeO₃ on hydrogenation/dehydrogenation properties of MgH₂ / J. Rare Earths. – 2015. – 33. – P. 334. doi:10.1016/S1002-0721(14)60422-1.